Persistent Link:
http://hdl.handle.net/10150/288794
Title:
Few-atom effects in atom optics
Author:
Pax, Paul Henry, 1958-
Issue Date:
1998
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Despite the many advances and achievements in the fields of atom optics and atom cooling, there remains a wealth of dynamical detail to be filled in. While the main features of the important phenomena of atomic cooling, trapping and manipulation by electromagnetic fields are well understood, there are interesting subsidiary effects that are worth our attention. An example, which we discuss in Ch. 5 is the discovery that atomic diffusion in optical lattices may not follow the normal diffusion equation. The work reported in this dissertation represents an investigation into possible few-body effects in some atom optical configurations of interest. The effects of indistinguishability, through the exchange force, on atomic diffraction by standing wave light fields is considered in Ch. 2. In Ch. 3, after a brief overview of atomic collisions in light fields, we look at the role that the dipole-dipole interaction might play, again in atomic diffraction. Chapters 4 and 5 are concerned with optical lattices, and lay the ground work for a study of the effect of the dipole-dipole interaction on the dynamics of atoms confined in such lattices.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Atomic.; Physics, Optics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Meystre, Pierre

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleFew-atom effects in atom opticsen_US
dc.creatorPax, Paul Henry, 1958-en_US
dc.contributor.authorPax, Paul Henry, 1958-en_US
dc.date.issued1998en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractDespite the many advances and achievements in the fields of atom optics and atom cooling, there remains a wealth of dynamical detail to be filled in. While the main features of the important phenomena of atomic cooling, trapping and manipulation by electromagnetic fields are well understood, there are interesting subsidiary effects that are worth our attention. An example, which we discuss in Ch. 5 is the discovery that atomic diffusion in optical lattices may not follow the normal diffusion equation. The work reported in this dissertation represents an investigation into possible few-body effects in some atom optical configurations of interest. The effects of indistinguishability, through the exchange force, on atomic diffraction by standing wave light fields is considered in Ch. 2. In Ch. 3, after a brief overview of atomic collisions in light fields, we look at the role that the dipole-dipole interaction might play, again in atomic diffraction. Chapters 4 and 5 are concerned with optical lattices, and lay the ground work for a study of the effect of the dipole-dipole interaction on the dynamics of atoms confined in such lattices.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Atomic.en_US
dc.subjectPhysics, Optics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMeystre, Pierreen_US
dc.identifier.proquest9829343en_US
dc.identifier.bibrecord.b38552577en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.