A spectrophotometric survey of comets and earth-approaching asteroids

Persistent Link:
http://hdl.handle.net/10150/288719
Title:
A spectrophotometric survey of comets and earth-approaching asteroids
Author:
Hicks, Michael David
Issue Date:
1997
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In this dissertation the results of a ten-year spectrophotometric survey of comets are presented. By measuring in a systematic way the production rates of C₂ NH₂, CN, and H₂O released from the nucleus, we sought to explore comet-to-comet variations that may yield clues to conditions in the early solar nebula. We classify our observed comets into four taxonomic classes (Type I, II, III, IV). The two classes which comprise the great majority of our sample (Type I and II) were also discerned in the recent survey by A'Hearn et al. (1996) and in general can be thought of as "normal" and "C₂ depleted" comets. It is argued that the "normal" comets in general originate in the inner comet forming regions at the distances of Uranus and Neptune whereas the "C₂ depleted" may originate in the inner edge of the Kuiper disk. Evolved from our interest in extinct cometary candidates, we present the results of out near-Earth asteroid spectroscopy survey. Though taken at a wavelength range that makes firm classification difficult (0.5-1.0μm) we find that in general our sample is much closer spectroscopically to the ordinary chondrites and basaltic achondrites than to the spectra of main-belt asteroids, firming the link between near-Earth asteroids and meteorites.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Astronomy and Astrophysics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Planetary Sciences
Degree Grantor:
University of Arizona
Advisor:
Fink, Uwe

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleA spectrophotometric survey of comets and earth-approaching asteroidsen_US
dc.creatorHicks, Michael Daviden_US
dc.contributor.authorHicks, Michael Daviden_US
dc.date.issued1997en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn this dissertation the results of a ten-year spectrophotometric survey of comets are presented. By measuring in a systematic way the production rates of C₂ NH₂, CN, and H₂O released from the nucleus, we sought to explore comet-to-comet variations that may yield clues to conditions in the early solar nebula. We classify our observed comets into four taxonomic classes (Type I, II, III, IV). The two classes which comprise the great majority of our sample (Type I and II) were also discerned in the recent survey by A'Hearn et al. (1996) and in general can be thought of as "normal" and "C₂ depleted" comets. It is argued that the "normal" comets in general originate in the inner comet forming regions at the distances of Uranus and Neptune whereas the "C₂ depleted" may originate in the inner edge of the Kuiper disk. Evolved from our interest in extinct cometary candidates, we present the results of out near-Earth asteroid spectroscopy survey. Though taken at a wavelength range that makes firm classification difficult (0.5-1.0μm) we find that in general our sample is much closer spectroscopically to the ordinary chondrites and basaltic achondrites than to the spectra of main-belt asteroids, firming the link between near-Earth asteroids and meteorites.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Astronomy and Astrophysics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePlanetary Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFink, Uween_US
dc.identifier.proquest9806796en_US
dc.identifier.bibrecord.b37541316en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.