Persistent Link:
http://hdl.handle.net/10150/288704
Title:
Scout: A path-based operating system
Author:
Mosberger, David
Issue Date:
1997
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Scout is a new operating system architecture that is designed specifically to accommodate the needs of communication-centric systems. An important class of such systems is formed by information appliances, which, broadly speaking, are devices whose primary task is to facilitate communication. Appliances are typically relatively small, special-purpose, and often mobile devices such as remote controls, personal information managers, network-attached disks, cameras, displays, or dedicated file-servers. Scout has a modular structure that is complemented by a new abstraction called the path. The modular structure enables the efficient building of systems that are tailored precisely to the requirements of a particular appliance. Paths address issues related to the performance and quality with which a communication service is rendered. A path can be visualized as a vertical slice through a layered system or viewed abstractly as a bidirectional flow of data. As such, a path typically traverses multiple modules in a Scout system. This means that paths provide additional context to the modules that process data that is being communicated through the system. This context often makes it possible to implement data processing more efficiently or to improve the quality with which resource management, such as CPU scheduling or memory allocation, is realized. This dissertation develops the path abstraction from first principles and then introduces the various aspects of the Scout architecture. Aside from the path abstraction, Scout uses a novel approach for network packet classification. With the Scout architecture defined, two studies are presented that provide an in-depth look at how to use Scout and its path abstraction. The first study employs the path abstraction to reduce processing latency in the networking subsystem. Evaluating these path optimizations also provides important insights on the performance behavior of networking subsystems on modern RISC machines. The second study employs the path abstraction to improve resource management for an information appliance that involves a networked TV displaying MPEG encoded video.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Information Science.; Computer Science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Computer Science
Degree Grantor:
University of Arizona
Advisor:
Peterson, Larry L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleScout: A path-based operating systemen_US
dc.creatorMosberger, Daviden_US
dc.contributor.authorMosberger, Daviden_US
dc.date.issued1997en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractScout is a new operating system architecture that is designed specifically to accommodate the needs of communication-centric systems. An important class of such systems is formed by information appliances, which, broadly speaking, are devices whose primary task is to facilitate communication. Appliances are typically relatively small, special-purpose, and often mobile devices such as remote controls, personal information managers, network-attached disks, cameras, displays, or dedicated file-servers. Scout has a modular structure that is complemented by a new abstraction called the path. The modular structure enables the efficient building of systems that are tailored precisely to the requirements of a particular appliance. Paths address issues related to the performance and quality with which a communication service is rendered. A path can be visualized as a vertical slice through a layered system or viewed abstractly as a bidirectional flow of data. As such, a path typically traverses multiple modules in a Scout system. This means that paths provide additional context to the modules that process data that is being communicated through the system. This context often makes it possible to implement data processing more efficiently or to improve the quality with which resource management, such as CPU scheduling or memory allocation, is realized. This dissertation develops the path abstraction from first principles and then introduces the various aspects of the Scout architecture. Aside from the path abstraction, Scout uses a novel approach for network packet classification. With the Scout architecture defined, two studies are presented that provide an in-depth look at how to use Scout and its path abstraction. The first study employs the path abstraction to reduce processing latency in the networking subsystem. Evaluating these path optimizations also provides important insights on the performance behavior of networking subsystems on modern RISC machines. The second study employs the path abstraction to improve resource management for an information appliance that involves a networked TV displaying MPEG encoded video.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectInformation Science.en_US
dc.subjectComputer Science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineComputer Scienceen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPeterson, Larry L.en_US
dc.identifier.proquest9806762en_US
dc.identifier.bibrecord.b37515949en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.