Regularization of the image division approach to blind deconvolution

Persistent Link:
http://hdl.handle.net/10150/284330
Title:
Regularization of the image division approach to blind deconvolution
Author:
Barraza-Felix, Sergio
Issue Date:
2002
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Randomly inhomogeneous media, such as a turbulent atmosphere, degrade images taken by optical systems. This imposes strong limitations on the resolution achieved by optical systems. The quest for increasing the angular resolution of terrestrial telescopes is still open. This work is a small contribution in that quest. A problem of blind deconvolution arises when one attempts to restore a short-exposure image that has been degraded by random atmospheric turbulence. The image division method attacks this problem by using two short-exposure images of the same object and taking the ratio of their respective Fourier transforms. The result is the quotient of the unknowns transfer functions. The latter are expressed as Fourier series in corresponding point-spread functions. Cross multiplying the division equation gives a system of linear equations with the point-spread functions as unknowns. It is found that the system of linear equations, resulting from the implementation of the image division method, has a multiplicity of solutions. Moreover such system of equations is poorly conditioned. This brings the necessity of a regularization approach. This dissertation describes the development and implementation of a regularization algorithm for the image division method. Using this regularization algorithm the blind deconvolution problem is posed as a constrained least-squares problem. A least-squares solution is found by computing a QR factorization of the system matrix. The Householder transformation method is used to find this factorization. The QR decomposition transforms the problem into an upper-triangular system of equations which is solved by backsubstitution. Prior partial knowledge about the point-spread functions and the object (such as finite support and positivity) is used to impose constrains on the solution, solving the multiplicity-solutions problem. The regularization algorithm is tested with simulated and real data. Good quality reconstructions are obtained from the implementation of the regularized image division method on computer simulated atmospheric degraded images corrupted with up to 5% of additive Gaussian noise, or corrupted with Poisson noise with 100 or more photons as the average number of photons per pixel. It also yields good results when tested with real infrared short-exposure images.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Optics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Frieden, B. Roy

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleRegularization of the image division approach to blind deconvolutionen_US
dc.creatorBarraza-Felix, Sergioen_US
dc.contributor.authorBarraza-Felix, Sergioen_US
dc.date.issued2002en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractRandomly inhomogeneous media, such as a turbulent atmosphere, degrade images taken by optical systems. This imposes strong limitations on the resolution achieved by optical systems. The quest for increasing the angular resolution of terrestrial telescopes is still open. This work is a small contribution in that quest. A problem of blind deconvolution arises when one attempts to restore a short-exposure image that has been degraded by random atmospheric turbulence. The image division method attacks this problem by using two short-exposure images of the same object and taking the ratio of their respective Fourier transforms. The result is the quotient of the unknowns transfer functions. The latter are expressed as Fourier series in corresponding point-spread functions. Cross multiplying the division equation gives a system of linear equations with the point-spread functions as unknowns. It is found that the system of linear equations, resulting from the implementation of the image division method, has a multiplicity of solutions. Moreover such system of equations is poorly conditioned. This brings the necessity of a regularization approach. This dissertation describes the development and implementation of a regularization algorithm for the image division method. Using this regularization algorithm the blind deconvolution problem is posed as a constrained least-squares problem. A least-squares solution is found by computing a QR factorization of the system matrix. The Householder transformation method is used to find this factorization. The QR decomposition transforms the problem into an upper-triangular system of equations which is solved by backsubstitution. Prior partial knowledge about the point-spread functions and the object (such as finite support and positivity) is used to impose constrains on the solution, solving the multiplicity-solutions problem. The regularization algorithm is tested with simulated and real data. Good quality reconstructions are obtained from the implementation of the regularized image division method on computer simulated atmospheric degraded images corrupted with up to 5% of additive Gaussian noise, or corrupted with Poisson noise with 100 or more photons as the average number of photons per pixel. It also yields good results when tested with real infrared short-exposure images.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Optics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFrieden, B. Royen_US
dc.identifier.proquest3073190en_US
dc.identifier.bibrecord.b43426888en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.