Remote-access slit-scanning confocal microscope for in vivo tumor diagnosis

Persistent Link:
http://hdl.handle.net/10150/284035
Title:
Remote-access slit-scanning confocal microscope for in vivo tumor diagnosis
Author:
Sabharwal, Yashvinder Singh, 1970-
Issue Date:
1998
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Microscopic fluorescence imaging of thick biological tissue has been successfully demonstrated with a fiber-based, slit-scanning, confocal microscope. The system developed under this research consists of an illumination arm, a fiber-optic imaging system, and a detection arm. The illumination arm is an anamorphic optical system that converts a circular, laser beam into a cylindrical beam forming a line image at the proximal face of the fiber-optic relay. This relay system is comprised of a fiber-optic imaging bundle, a miniature objective lens, and a miniature hydraulic positioning mechanism. It delivers illumination to a remote sample and simultaneously collects the fluorescence from the sample. The miniature objective lens and positioning mechanism were specially designed and fabricated for this system, allowing for high resolution imaging and optical sectioning in-vivo. The detection arm relays the fluorescence image at the proximal face of the fiber-optic relay with magnification onto a two-dimensional CCD. Characterization of the system has demonstrated a lateral resolution of three microns. The axial resolution when imaging a point object is 10 microns. When imaging a planar object, the axial resolution is 25 microns. Images are acquired at a rate of 2-4 frames per second and the imaging performance has been evaluated with different biological models including animal peritoneal tissue and human prostate tissue in-vitro. In-vivo images of human skin and rat peritoneum have also been acquired to demonstrate that patient motion does not adversely affect the performance of the system. These in-vitro and in vivo images demonstrate the capability of the system to resolve cell nuclear morphology, to visualize cell density and organization, and to image at selected depths below the tissue surface.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Optics.; Health Sciences, Oncology.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Gmitro, Arthur F.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleRemote-access slit-scanning confocal microscope for in vivo tumor diagnosisen_US
dc.creatorSabharwal, Yashvinder Singh, 1970-en_US
dc.contributor.authorSabharwal, Yashvinder Singh, 1970-en_US
dc.date.issued1998en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMicroscopic fluorescence imaging of thick biological tissue has been successfully demonstrated with a fiber-based, slit-scanning, confocal microscope. The system developed under this research consists of an illumination arm, a fiber-optic imaging system, and a detection arm. The illumination arm is an anamorphic optical system that converts a circular, laser beam into a cylindrical beam forming a line image at the proximal face of the fiber-optic relay. This relay system is comprised of a fiber-optic imaging bundle, a miniature objective lens, and a miniature hydraulic positioning mechanism. It delivers illumination to a remote sample and simultaneously collects the fluorescence from the sample. The miniature objective lens and positioning mechanism were specially designed and fabricated for this system, allowing for high resolution imaging and optical sectioning in-vivo. The detection arm relays the fluorescence image at the proximal face of the fiber-optic relay with magnification onto a two-dimensional CCD. Characterization of the system has demonstrated a lateral resolution of three microns. The axial resolution when imaging a point object is 10 microns. When imaging a planar object, the axial resolution is 25 microns. Images are acquired at a rate of 2-4 frames per second and the imaging performance has been evaluated with different biological models including animal peritoneal tissue and human prostate tissue in-vitro. In-vivo images of human skin and rat peritoneum have also been acquired to demonstrate that patient motion does not adversely affect the performance of the system. These in-vitro and in vivo images demonstrate the capability of the system to resolve cell nuclear morphology, to visualize cell density and organization, and to image at selected depths below the tissue surface.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Optics.en_US
dc.subjectHealth Sciences, Oncology.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGmitro, Arthur F.en_US
dc.identifier.proquest9960223en_US
dc.identifier.bibrecord.b40263770en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.