Persistent Link:
http://hdl.handle.net/10150/283603
Title:
Energy Management for Virtual Machines
Author:
Ye, Lei
Issue Date:
2013
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Current computing infrastructures use virtualization to increase resource utilization by deploying multiple virtual machines on the same hardware. Virtualization is particularly attractive for data center, cloud computing, and hosting services; in these environments computer systems are typically configured to have fast processors, large physical memory and huge storage capable of supporting concurrent execution of virtual machines. Subsequently, this high demand for resources is directly translating into higher energy consumption and monetary costs. Increasingly managing energy consumption of virtual machines is becoming critical. However, virtual machines make the energy management more challenging because a layer of virtualization separates hardware from the guest operating system executing inside a virtual machine. This dissertation addresses the challenge of designing energy-efficient storage, memory and buffer cache for virtual machines by exploring innovative mechanisms as well as existing approaches. We analyze the architecture of an open-source virtual machine platform Xen and address energy management on each subsystem. For storage system, we study the I/O behavior of the virtual machine systems. We address the isolation between virtual machine monitor and virtual machines, and increase the burstiness of disk accesses to improve energy efficiency. In addition, we propose a transparent energy management on main memory for any types of guest operating systems running inside virtual machines. Furthermore, we design a dedicated mechanism for the buffer cache based on the fact that data-intensive applications heavily rely on a large buffer cache that occupies a majority of physical memory. We also propose a novel hybrid mechanism that is able to improve energy efficiency for any memory access. All the mechanisms achieve significant energy savings while lowering the impact on performance for virtual machines.
Type:
text; Electronic Dissertation
Keywords:
Energy Management; Memory System; Storage System; Virtual Machine; Computer Science; Buffer Cache
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Computer Science
Degree Grantor:
University of Arizona
Advisor:
Gniady, Christopher

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleEnergy Management for Virtual Machinesen_US
dc.creatorYe, Leien_US
dc.contributor.authorYe, Leien_US
dc.date.issued2013-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractCurrent computing infrastructures use virtualization to increase resource utilization by deploying multiple virtual machines on the same hardware. Virtualization is particularly attractive for data center, cloud computing, and hosting services; in these environments computer systems are typically configured to have fast processors, large physical memory and huge storage capable of supporting concurrent execution of virtual machines. Subsequently, this high demand for resources is directly translating into higher energy consumption and monetary costs. Increasingly managing energy consumption of virtual machines is becoming critical. However, virtual machines make the energy management more challenging because a layer of virtualization separates hardware from the guest operating system executing inside a virtual machine. This dissertation addresses the challenge of designing energy-efficient storage, memory and buffer cache for virtual machines by exploring innovative mechanisms as well as existing approaches. We analyze the architecture of an open-source virtual machine platform Xen and address energy management on each subsystem. For storage system, we study the I/O behavior of the virtual machine systems. We address the isolation between virtual machine monitor and virtual machines, and increase the burstiness of disk accesses to improve energy efficiency. In addition, we propose a transparent energy management on main memory for any types of guest operating systems running inside virtual machines. Furthermore, we design a dedicated mechanism for the buffer cache based on the fact that data-intensive applications heavily rely on a large buffer cache that occupies a majority of physical memory. We also propose a novel hybrid mechanism that is able to improve energy efficiency for any memory access. All the mechanisms achieve significant energy savings while lowering the impact on performance for virtual machines.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectEnergy Managementen_US
dc.subjectMemory Systemen_US
dc.subjectStorage Systemen_US
dc.subjectVirtual Machineen_US
dc.subjectComputer Scienceen_US
dc.subjectBuffer Cacheen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineComputer Scienceen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGniady, Christopheren_US
dc.contributor.committeememberGniady, Christopheren_US
dc.contributor.committeememberHartman, John H.en_US
dc.contributor.committeememberLowenthal, David K.en_US
dc.contributor.committeememberZhang, Beichuanen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.