SOIL NUTRIENT AVAILABILITY DURING RECLAMATION OF SALT-AFFECTED SOILS

Persistent Link:
http://hdl.handle.net/10150/282858
Title:
SOIL NUTRIENT AVAILABILITY DURING RECLAMATION OF SALT-AFFECTED SOILS
Author:
Tavassoli, Abolghasem, 1940-
Issue Date:
1980
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Reclamation of four salt-affected soils collected from southern Arizona was studied in the greenhouse and laboratory. Two rates of four amendments (sulphuric acid, gypsum, ammonium polysulphide, and ammonium thiosulphate) were applied in triplicate. Results were evaluated in terms of changes in nutrient availability, ions removed by leaching, plant growth, and infiltration rates. In most cases the high rates of sulphuric acid and gypsum increased the solubility of the major cations (Na, K, Ca, and Mg) in the soil. If the required amount of leaching water were applied to the soil, a significant amount of these cations, especially Na, was leached from the soil. For the Gothard soil (saline-sodic) two pore volumes were sufficient to accomplish leaching, but were insuffcient for the Guest (nonsaline-slightly sodic) and Gilman (highly saline-sodic) soils. High rates of sulphuric acid and gypsum decreased the pH and increased the EC for all soils, although the EC was not significant at the 5% level for the Mohall (nonsaline-nonsodic, calcareous) soil. All treatments decreased the pH of the Gothard soil significantly; however, the greatest increase in EC and least pH were obtained from acid application. Regarding changes in phosphorus (P), all treatments increased the amount of soluble P in the leachates from the Gothard and Guest soils; whereas available soil P increased significantly only with the acid treatments. None of the treatments affected the amount of P in the Gilman soil leachates, but acid and gypsum increased the available soil P. Ammonium polysulphide and ammonium thiosulphate tended to increase available P but the increase was not significant at the 5% level. None of the treatments affected the P parameters for the Mohall soil. Sulphuric acid increased growth and P uptake of alfalfa plants on all soils except the Mohall. Gypsum and ammonium polysulphide increased P uptake on the Gothard and Guest soils whereas ammonium thiosulphate increased P uptake only for the Guest soil. Sulphuric acid and gypsum increased the infiltration rates for all four soils. Thiosulphate produced intermediate infiltration rates while the lowest rates were found with ammonium polysulphide and the untreated soils. Although amendment rates were based on equivalent amounts of sulphur and their effectiveness in supplying soluble calcium, and the exchangeable sodium status of each soil, results varied according to such factors as rate of oxidation of the amendment, lime content of the soil, soluble salts present in the soil, and soil texture.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Soils, Salts in -- Arizona.; Alkali lands.; Soil conditioners.; Reclamation of land -- Arizona.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Soils, Water and Engineering
Degree Grantor:
University of Arizona
Advisor:
Stroehlein, Jack L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleSOIL NUTRIENT AVAILABILITY DURING RECLAMATION OF SALT-AFFECTED SOILSen_US
dc.creatorTavassoli, Abolghasem, 1940-en_US
dc.contributor.authorTavassoli, Abolghasem, 1940-en_US
dc.date.issued1980en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractReclamation of four salt-affected soils collected from southern Arizona was studied in the greenhouse and laboratory. Two rates of four amendments (sulphuric acid, gypsum, ammonium polysulphide, and ammonium thiosulphate) were applied in triplicate. Results were evaluated in terms of changes in nutrient availability, ions removed by leaching, plant growth, and infiltration rates. In most cases the high rates of sulphuric acid and gypsum increased the solubility of the major cations (Na, K, Ca, and Mg) in the soil. If the required amount of leaching water were applied to the soil, a significant amount of these cations, especially Na, was leached from the soil. For the Gothard soil (saline-sodic) two pore volumes were sufficient to accomplish leaching, but were insuffcient for the Guest (nonsaline-slightly sodic) and Gilman (highly saline-sodic) soils. High rates of sulphuric acid and gypsum decreased the pH and increased the EC for all soils, although the EC was not significant at the 5% level for the Mohall (nonsaline-nonsodic, calcareous) soil. All treatments decreased the pH of the Gothard soil significantly; however, the greatest increase in EC and least pH were obtained from acid application. Regarding changes in phosphorus (P), all treatments increased the amount of soluble P in the leachates from the Gothard and Guest soils; whereas available soil P increased significantly only with the acid treatments. None of the treatments affected the amount of P in the Gilman soil leachates, but acid and gypsum increased the available soil P. Ammonium polysulphide and ammonium thiosulphate tended to increase available P but the increase was not significant at the 5% level. None of the treatments affected the P parameters for the Mohall soil. Sulphuric acid increased growth and P uptake of alfalfa plants on all soils except the Mohall. Gypsum and ammonium polysulphide increased P uptake on the Gothard and Guest soils whereas ammonium thiosulphate increased P uptake only for the Guest soil. Sulphuric acid and gypsum increased the infiltration rates for all four soils. Thiosulphate produced intermediate infiltration rates while the lowest rates were found with ammonium polysulphide and the untreated soils. Although amendment rates were based on equivalent amounts of sulphur and their effectiveness in supplying soluble calcium, and the exchangeable sodium status of each soil, results varied according to such factors as rate of oxidation of the amendment, lime content of the soil, soluble salts present in the soil, and soil texture.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectSoils, Salts in -- Arizona.en_US
dc.subjectAlkali lands.en_US
dc.subjectSoil conditioners.en_US
dc.subjectReclamation of land -- Arizona.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineSoils, Water and Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorStroehlein, Jack L.en_US
dc.identifier.proquest8107160en_US
dc.identifier.oclc7514422en_US
dc.identifier.bibrecord.b1806940xen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.