Radiometric calibration of on-orbit satellite sensors using an improved cross-calibration method

Persistent Link:
http://hdl.handle.net/10150/282831
Title:
Radiometric calibration of on-orbit satellite sensors using an improved cross-calibration method
Author:
Scott, Karen Patricia, 1964-
Issue Date:
1998
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
As the field of remote sensing continues to grow with the launches of many new and complex satellite sensors in the next year, the ability to provide absolute calibration of these sensors becomes paramount for the many environmental studies proposed. In particular, temporal studies that monitor global changes in atmospheric constituents, ocean and terrestrial temperatures, and vegetation require that changes in the sensor itself, over the period of the study, be understood so that the data may be corrected. Numerous studies have established that satellite sensors change in orbit with respect to preflight calibration, in some cases, up to 20% or more over periods of three years. This research describes the development of an improved cross-calibration method of on-orbit satellite sensor radiometric calibration. The objective of the cross-calibration method is to transfer one sensor's calibration to another sensor which is typically difficult or expensive to calibrate with other methods. The cross-calibration method is relatively inexpensive to apply, and therefore there was a strong incentive to improve the application of the method and the understanding of the uncertainties associated with the method. The primary effort in this work has been the development of a cross-calibration software program which provides the means to easily perform end-to-end cross-calibrations. The program allows for a multiplicity of sites to be run, provides a search mechanism in order to identify calibration sites with particular characteristics, and contains an extensive error analysis capability. As part of this work, a search for acceptable cross-calibration sites was also performed which would allow a reduction in uncertainties of the method. Calibrations of five different sensor band pairs using System Pour l'Observation de la Terre (SPOT) 3, Landsat Thematic Mapper, and Advanced Very High Resolution Radiometer (AVHRR) sensors are performed. Very good results are obtained when the results are compared with other more expensive calibration methods, and the calibrations yielded uncertainties lower than reported in previous work.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Aerospace.; Physics, Optics.; Remote Sensing.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Thome, Kurtis J.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleRadiometric calibration of on-orbit satellite sensors using an improved cross-calibration methoden_US
dc.creatorScott, Karen Patricia, 1964-en_US
dc.contributor.authorScott, Karen Patricia, 1964-en_US
dc.date.issued1998en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAs the field of remote sensing continues to grow with the launches of many new and complex satellite sensors in the next year, the ability to provide absolute calibration of these sensors becomes paramount for the many environmental studies proposed. In particular, temporal studies that monitor global changes in atmospheric constituents, ocean and terrestrial temperatures, and vegetation require that changes in the sensor itself, over the period of the study, be understood so that the data may be corrected. Numerous studies have established that satellite sensors change in orbit with respect to preflight calibration, in some cases, up to 20% or more over periods of three years. This research describes the development of an improved cross-calibration method of on-orbit satellite sensor radiometric calibration. The objective of the cross-calibration method is to transfer one sensor's calibration to another sensor which is typically difficult or expensive to calibrate with other methods. The cross-calibration method is relatively inexpensive to apply, and therefore there was a strong incentive to improve the application of the method and the understanding of the uncertainties associated with the method. The primary effort in this work has been the development of a cross-calibration software program which provides the means to easily perform end-to-end cross-calibrations. The program allows for a multiplicity of sites to be run, provides a search mechanism in order to identify calibration sites with particular characteristics, and contains an extensive error analysis capability. As part of this work, a search for acceptable cross-calibration sites was also performed which would allow a reduction in uncertainties of the method. Calibrations of five different sensor band pairs using System Pour l'Observation de la Terre (SPOT) 3, Landsat Thematic Mapper, and Advanced Very High Resolution Radiometer (AVHRR) sensors are performed. Very good results are obtained when the results are compared with other more expensive calibration methods, and the calibrations yielded uncertainties lower than reported in previous work.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Aerospace.en_US
dc.subjectPhysics, Optics.en_US
dc.subjectRemote Sensing.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorThome, Kurtis J.en_US
dc.identifier.proquest9912138en_US
dc.identifier.bibrecord.b39124447en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.