A model and algorithm for sizing and routing DCS switched telecommunications networks

Persistent Link:
http://hdl.handle.net/10150/282772
Title:
A model and algorithm for sizing and routing DCS switched telecommunications networks
Author:
Cameron, Grant Arthur, 1960-
Issue Date:
1998
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Demand for broadband services such as fax, videotelephony, video conference and data transmission continues to explode as we move into the twenty-first century. The new broadband demand differs from voice traffic in that it varies rapidly with respect to the average length of time capacity is held by a customer. Hence, steady state models of network traffic are not valid in general, and may not provide approximations that are sufficiently accurate for network design. In addition, modern telecommunications networks incorporate advanced switching technology that can provide flexible routing of network traffic based on network load and projected demand. It is desireable to take advantage of this new flexibility to design reliable, yet low cost, networks. In this dissertation a multistage stochastic linear programming model for the design of broadband networks is presented, along with a specialized algorithm for solving the program. The algorithm is based on Network Recourse Decomposition (NRD) first introduced by Powell and Cheung. The solution method incorporates cost calculations that prove to be useful for both sizing and routing decisions.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Electronics and Electrical.; Operations Research.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Systems and Industrial Engineering
Degree Grantor:
University of Arizona
Advisor:
Higle, Julia L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleA model and algorithm for sizing and routing DCS switched telecommunications networksen_US
dc.creatorCameron, Grant Arthur, 1960-en_US
dc.contributor.authorCameron, Grant Arthur, 1960-en_US
dc.date.issued1998en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractDemand for broadband services such as fax, videotelephony, video conference and data transmission continues to explode as we move into the twenty-first century. The new broadband demand differs from voice traffic in that it varies rapidly with respect to the average length of time capacity is held by a customer. Hence, steady state models of network traffic are not valid in general, and may not provide approximations that are sufficiently accurate for network design. In addition, modern telecommunications networks incorporate advanced switching technology that can provide flexible routing of network traffic based on network load and projected demand. It is desireable to take advantage of this new flexibility to design reliable, yet low cost, networks. In this dissertation a multistage stochastic linear programming model for the design of broadband networks is presented, along with a specialized algorithm for solving the program. The algorithm is based on Network Recourse Decomposition (NRD) first introduced by Powell and Cheung. The solution method incorporates cost calculations that prove to be useful for both sizing and routing decisions.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Electronics and Electrical.en_US
dc.subjectOperations Research.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineSystems and Industrial Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHigle, Julia L.en_US
dc.identifier.proquest9912071en_US
dc.identifier.bibrecord.b39115562en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.