Electrochemical and spectroscopic characterization of self-assembled monolayers: Electrode modification for cardiac pacing applications

Persistent Link:
http://hdl.handle.net/10150/282526
Title:
Electrochemical and spectroscopic characterization of self-assembled monolayers: Electrode modification for cardiac pacing applications
Author:
Schoenfisch, Mark Henry, 1970-
Issue Date:
1997
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
New biomaterials for permanent cardiac pacemaking electrode applications based on Au surfaces chemically modified with self-assembled monolayers (SAMs) have been developed. The research described herein focuses on four areas related to understanding the extraordinary pacing exhibited by modified pacemaker electrodes. SAM-modified pacemaker electrodes were fabricated and tested in canines for chronic and acute cardiac pacing. In addition to having electrical properties suitable for pacing the heart, SAM-modified electrodes are proven superior to control electrodes in pacing performance. The data suggest that the biocompatibility of electrically conductive materials can be controlled at the molecular level with monolayer organic surface films. The development of a small rodent model for studying cardiac pacing was explored as an alternative to using canines in clinical studies. Rodents, not previously used for such studies, were demonstrated to be excellent mammals for testing initial electrode modification strategies. Myocardial tissue resistance in a living mammalian heart was determined using chronoamperometry and cyclic voltammetry of Ru(NH3 Pacemaker systems represent complete electrochemical cells. Thus, modified pacemaker electrodes are simply examples of chemically modified electrodes, an area of electrochemistry which has been studied extensively over the past two decades. For these types of systems, the interfacial chemistry occurring in the vicinity of the SAM is crucial to its function. Therefore, investigations into the stability, order, and orientation of SAMs at the metal electrode surface, and solvent behavior at the outer edge of the SAMs were undertaken. Such fundamental information is critical in understanding the biocompatibility of these modified pacemaker electrodes, and potentially, in understanding the mechanism for the pacing efficacy of the electrode modification. Surface Raman spectroscopy using an emersion approach was developed as an exceptional technique for probing the structural order and stability of SAMs on Ag and Au after exposure to solvent, electrolyte, and potential. Finally, the stability of these SAM-modified pacemaker electrodes to air and mechanical stress was investigated. Raman spectroscopy, cyclic voltammetry and x-ray photoelectron spectroscopy were utilized to better understand the shelf-life of modified electrodes.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Chemistry, Analytical.; Engineering, Biomedical.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Pemberton, Jeanne E.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleElectrochemical and spectroscopic characterization of self-assembled monolayers: Electrode modification for cardiac pacing applicationsen_US
dc.creatorSchoenfisch, Mark Henry, 1970-en_US
dc.contributor.authorSchoenfisch, Mark Henry, 1970-en_US
dc.date.issued1997en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractNew biomaterials for permanent cardiac pacemaking electrode applications based on Au surfaces chemically modified with self-assembled monolayers (SAMs) have been developed. The research described herein focuses on four areas related to understanding the extraordinary pacing exhibited by modified pacemaker electrodes. SAM-modified pacemaker electrodes were fabricated and tested in canines for chronic and acute cardiac pacing. In addition to having electrical properties suitable for pacing the heart, SAM-modified electrodes are proven superior to control electrodes in pacing performance. The data suggest that the biocompatibility of electrically conductive materials can be controlled at the molecular level with monolayer organic surface films. The development of a small rodent model for studying cardiac pacing was explored as an alternative to using canines in clinical studies. Rodents, not previously used for such studies, were demonstrated to be excellent mammals for testing initial electrode modification strategies. Myocardial tissue resistance in a living mammalian heart was determined using chronoamperometry and cyclic voltammetry of Ru(NH3 Pacemaker systems represent complete electrochemical cells. Thus, modified pacemaker electrodes are simply examples of chemically modified electrodes, an area of electrochemistry which has been studied extensively over the past two decades. For these types of systems, the interfacial chemistry occurring in the vicinity of the SAM is crucial to its function. Therefore, investigations into the stability, order, and orientation of SAMs at the metal electrode surface, and solvent behavior at the outer edge of the SAMs were undertaken. Such fundamental information is critical in understanding the biocompatibility of these modified pacemaker electrodes, and potentially, in understanding the mechanism for the pacing efficacy of the electrode modification. Surface Raman spectroscopy using an emersion approach was developed as an exceptional technique for probing the structural order and stability of SAMs on Ag and Au after exposure to solvent, electrolyte, and potential. Finally, the stability of these SAM-modified pacemaker electrodes to air and mechanical stress was investigated. Raman spectroscopy, cyclic voltammetry and x-ray photoelectron spectroscopy were utilized to better understand the shelf-life of modified electrodes.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectChemistry, Analytical.en_US
dc.subjectEngineering, Biomedical.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPemberton, Jeanne E.en_US
dc.identifier.proquest9814417en_US
dc.identifier.bibrecord.b37742899en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.