Persistent Link:
http://hdl.handle.net/10150/282448
Title:
Molecular orientation distributions in adsorbed protein films
Author:
Lee, John Edwin, 1965-
Issue Date:
1997
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Understanding and controlling protein adsorption is fundamentally important to the successful development of synthetic biomaterials and implantable chemical sensing devices. However, the study of protein adsorption, and in particular, orientation in protein thin films has been hampered by inadequate methods with which to study weakly absorbing thin protein films. In this work, Integrated Optical Waveguide-Attenuated Total Reflection Linear Dichroism (IOW-ATR LD) coupled with fluorescence emission anisotropy was used to study: (1) the orientation of Mb as a function of the adsorbent surface and surface coverage, and (2) the orientation distributions of cyt c adsorbed to various surfaces. It was found that the average molecular orientation of an adsorbed protein film: (1) is dependent on the chemical and/or physical characteristics of the adsorbent surface, and (2) is dependent on the protein surface coverage. It was also determined that the macroscopic order of an adsorbed protein film is dependent on the number of different types of protein-surface interactions in a given system. If there is one dominant type of interaction between the between the protein and the surface which is limited to a specific region on the surface of the protein, an ordered protein film will be produced. However, as the number of the type of protein-surface interactions increases, the distribution of orientations also increases, leading to a disordered film. Finally, a broadband waveguide coupling device has been developed which allows spectroscopic measurements of submonolayer to monolayer surface coverages of proteins to be performed.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Chemistry, Analytical.; Chemistry, Biochemistry.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Saavedra, S. Scott

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleMolecular orientation distributions in adsorbed protein filmsen_US
dc.creatorLee, John Edwin, 1965-en_US
dc.contributor.authorLee, John Edwin, 1965-en_US
dc.date.issued1997en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractUnderstanding and controlling protein adsorption is fundamentally important to the successful development of synthetic biomaterials and implantable chemical sensing devices. However, the study of protein adsorption, and in particular, orientation in protein thin films has been hampered by inadequate methods with which to study weakly absorbing thin protein films. In this work, Integrated Optical Waveguide-Attenuated Total Reflection Linear Dichroism (IOW-ATR LD) coupled with fluorescence emission anisotropy was used to study: (1) the orientation of Mb as a function of the adsorbent surface and surface coverage, and (2) the orientation distributions of cyt c adsorbed to various surfaces. It was found that the average molecular orientation of an adsorbed protein film: (1) is dependent on the chemical and/or physical characteristics of the adsorbent surface, and (2) is dependent on the protein surface coverage. It was also determined that the macroscopic order of an adsorbed protein film is dependent on the number of different types of protein-surface interactions in a given system. If there is one dominant type of interaction between the between the protein and the surface which is limited to a specific region on the surface of the protein, an ordered protein film will be produced. However, as the number of the type of protein-surface interactions increases, the distribution of orientations also increases, leading to a disordered film. Finally, a broadband waveguide coupling device has been developed which allows spectroscopic measurements of submonolayer to monolayer surface coverages of proteins to be performed.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectChemistry, Analytical.en_US
dc.subjectChemistry, Biochemistry.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSaavedra, S. Scotten_US
dc.identifier.proquest9806844en_US
dc.identifier.bibrecord.b37563555en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.