Integration of a stochastic space-time rainfall model and distributed hydrologic simulation with GIS

Persistent Link:
http://hdl.handle.net/10150/282409
Title:
Integration of a stochastic space-time rainfall model and distributed hydrologic simulation with GIS
Author:
Zhang, Xiaohui
Issue Date:
1997
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This research presents an integration of a stochastic space-time rainfall model and distributed hydrologic simulation with GIS. The integrated simulation system consists of three subsystems: a stochastic space-time rainfall model, a geographical information system (GIS), and a distributed physically-based hydrologic model. The developed stochastic space-time rainfall model is capable of estimating the storm movement and simulating a random rainfall field over a study area, based on the measurement from three raingauges. An optimization-based lag-k correlation method was developed to estimate the storm movement, and a stochastic model was developed to simulate the rainfall field. A GIS tool, ARC/INFO, was integrated into this simulation system. GIS has been applied to automatically extract the spatially distributed parameters for hydrologic modeling. Digital elevation modeling techniques were used to process a high resolution digital map. A distributed physically-based hydrologic model, operated in HEC-1, simulated the stochastic, distributed, interrelated hydrological processes. The Green-Ampt equation is used for modeling the infiltration process, kinematic wave approximation for infiltration-excess overland flow, and the diffusion wave model for the unsteady channel flow. Two small nested experimental watersheds in southern Arizona were chosen as the study area where three raingauges are located. Using five recorded storm events, a series of simulations were performed under a variety of conditions. The simulation results show the model performs very well, by comparing the simulated runoff peak flow and runoff depth with the measured ones, and evaluated by the model efficiency. Both model structure and model parameter uncertainties were investigated in the sensitivity analysis. The statistical tests for the simulation results show that it is important to model stochastic rainfall with storm movement, which caused a significant change in runoff peak flow and runoff depth from that where the input is only one gage data. The sensitivity of runoff to roughness factor N and hydraulic conductivity Ks were intensively investigated. The research demonstrated this integrated system presents an improved simulation environment for the distributed hydrology.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Hydrology.; Engineering, Environmental.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Renewable Natural Resources and Watershed Management
Degree Grantor:
University of Arizona
Advisor:
Ball, George

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleIntegration of a stochastic space-time rainfall model and distributed hydrologic simulation with GISen_US
dc.creatorZhang, Xiaohuien_US
dc.contributor.authorZhang, Xiaohuien_US
dc.date.issued1997en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis research presents an integration of a stochastic space-time rainfall model and distributed hydrologic simulation with GIS. The integrated simulation system consists of three subsystems: a stochastic space-time rainfall model, a geographical information system (GIS), and a distributed physically-based hydrologic model. The developed stochastic space-time rainfall model is capable of estimating the storm movement and simulating a random rainfall field over a study area, based on the measurement from three raingauges. An optimization-based lag-k correlation method was developed to estimate the storm movement, and a stochastic model was developed to simulate the rainfall field. A GIS tool, ARC/INFO, was integrated into this simulation system. GIS has been applied to automatically extract the spatially distributed parameters for hydrologic modeling. Digital elevation modeling techniques were used to process a high resolution digital map. A distributed physically-based hydrologic model, operated in HEC-1, simulated the stochastic, distributed, interrelated hydrological processes. The Green-Ampt equation is used for modeling the infiltration process, kinematic wave approximation for infiltration-excess overland flow, and the diffusion wave model for the unsteady channel flow. Two small nested experimental watersheds in southern Arizona were chosen as the study area where three raingauges are located. Using five recorded storm events, a series of simulations were performed under a variety of conditions. The simulation results show the model performs very well, by comparing the simulated runoff peak flow and runoff depth with the measured ones, and evaluated by the model efficiency. Both model structure and model parameter uncertainties were investigated in the sensitivity analysis. The statistical tests for the simulation results show that it is important to model stochastic rainfall with storm movement, which caused a significant change in runoff peak flow and runoff depth from that where the input is only one gage data. The sensitivity of runoff to roughness factor N and hydraulic conductivity Ks were intensively investigated. The research demonstrated this integrated system presents an improved simulation environment for the distributed hydrology.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectHydrology.en_US
dc.subjectEngineering, Environmental.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineRenewable Natural Resources and Watershed Managementen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBall, Georgeen_US
dc.identifier.proquest9806788en_US
dc.identifier.bibrecord.b37532297en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.