Particle trapping, transport and charge in capacitively and inductively-coupled plasmas in a gaseous electronics conference RF reference cell

Persistent Link:
http://hdl.handle.net/10150/282306
Title:
Particle trapping, transport and charge in capacitively and inductively-coupled plasmas in a gaseous electronics conference RF reference cell
Author:
Collins, Sean Michael, 1959-
Issue Date:
1997
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Particle contamination from plasma tools used for the manufacture of VLSI semiconductor devices on silicon wafers is a major cause of device failure. This has fostered a need to understand the fundamentals of particle transport and trapping in plasmas of the kind used to process semiconductor devices. This dissertation reports on particle transport and trapping in two types of plasmas. Particles in both a capacitively coupled and an inductively coupled plasma were investigated in a Gaseous Electronics Conference (GEC) radio frequency (rf) reference cell using a new method of laser light scattering and detection. In a capacitively coupled plasma the role of thermal force and coulombic force on particle transport in post-plasma period was determined through experiment. The charge on particles in the post-plasma was also determined through analysis of particle motion and found to be 1.4 to 12.4 elemental charges per particle. Particle trapping in a capacitively coupled plasma was determined for a simple subsurface electrode structure. For an inductively coupled plasma, the a technique of particle detection is utilized to image particles despite a bright emission from the plasma. Particle trapping was observed to be quite different from trapping in a capacitively coupled plasma, and the post-plasma motion of particles is reported.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Electronics and Electrical.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Electrical and Computer Engineering
Degree Grantor:
University of Arizona
Advisor:
O'Hanlon, John F.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleParticle trapping, transport and charge in capacitively and inductively-coupled plasmas in a gaseous electronics conference RF reference cellen_US
dc.creatorCollins, Sean Michael, 1959-en_US
dc.contributor.authorCollins, Sean Michael, 1959-en_US
dc.date.issued1997en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractParticle contamination from plasma tools used for the manufacture of VLSI semiconductor devices on silicon wafers is a major cause of device failure. This has fostered a need to understand the fundamentals of particle transport and trapping in plasmas of the kind used to process semiconductor devices. This dissertation reports on particle transport and trapping in two types of plasmas. Particles in both a capacitively coupled and an inductively coupled plasma were investigated in a Gaseous Electronics Conference (GEC) radio frequency (rf) reference cell using a new method of laser light scattering and detection. In a capacitively coupled plasma the role of thermal force and coulombic force on particle transport in post-plasma period was determined through experiment. The charge on particles in the post-plasma was also determined through analysis of particle motion and found to be 1.4 to 12.4 elemental charges per particle. Particle trapping in a capacitively coupled plasma was determined for a simple subsurface electrode structure. For an inductively coupled plasma, the a technique of particle detection is utilized to image particles despite a bright emission from the plasma. Particle trapping was observed to be quite different from trapping in a capacitively coupled plasma, and the post-plasma motion of particles is reported.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Electronics and Electrical.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorO'Hanlon, John F.en_US
dc.identifier.proquest9729449en_US
dc.identifier.bibrecord.b34796587en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.