Persistent Link:
http://hdl.handle.net/10150/282232
Title:
Cable-drawn farming system analysis and control development
Author:
Siemens, Mark Cornelius, 1965-
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Four types of cable drawn farming systems, a single engine system, a double engine system, a perimeter system, and a double implement system, were analyzed to determine which was best suited for Arizona. The systems were compared in terms of relative cost, reliability/simplicity and field capacity. Field capacity computation variables were implement width, implement speed, tower travel speed, implement carrier travel speed, and implement rotation time. The analysis showed the single engine system was the least expensive, simplest system with a field capacity identical to that of the double engine system, eight percent lower than the double implement system, and approximately thirteen percent higher than the perimeter system. Based on these results, the single implement system was judged superior to the others. The parameters affecting single implement system performance were then examined to optimize performance. The evaluation yielded a recommendation that the system be designed to have a tower speed of 48 ft/min, and a rotation time of 7.5 seconds. A positioning system for the mobile truss of a cable drawn farming system was also developed and tested. The system used a linear move irrigation system's above ground cable guidance system for steering, a wicket positioning system for stopping the machine at the indexing locations, and a wire-alignment system to control inner tower alignment. The system was tested over a length of 280 ft using a five tower, 575 ft long, linear move irrigation system. It was found that the above ground cable guidance system provided ±0.5 ft steering accuracy, the wicket positioning system controlled the power unit and end tower position within ±0.2 ft of the target destination, and that the wire alignment system controlled inner tower position within ±0.3 ft of the target destination. Statistical analysis of the test results showed the probability of position error being controlled to within ±0.4 ft and ±0.8 ft to be at the 99.7% and 99.99% confidence levels, respectively.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Agricultural.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Agricultural and Biosystems Engineering
Degree Grantor:
University of Arizona
Advisor:
Coates, Wayne E.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleCable-drawn farming system analysis and control developmenten_US
dc.creatorSiemens, Mark Cornelius, 1965-en_US
dc.contributor.authorSiemens, Mark Cornelius, 1965-en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractFour types of cable drawn farming systems, a single engine system, a double engine system, a perimeter system, and a double implement system, were analyzed to determine which was best suited for Arizona. The systems were compared in terms of relative cost, reliability/simplicity and field capacity. Field capacity computation variables were implement width, implement speed, tower travel speed, implement carrier travel speed, and implement rotation time. The analysis showed the single engine system was the least expensive, simplest system with a field capacity identical to that of the double engine system, eight percent lower than the double implement system, and approximately thirteen percent higher than the perimeter system. Based on these results, the single implement system was judged superior to the others. The parameters affecting single implement system performance were then examined to optimize performance. The evaluation yielded a recommendation that the system be designed to have a tower speed of 48 ft/min, and a rotation time of 7.5 seconds. A positioning system for the mobile truss of a cable drawn farming system was also developed and tested. The system used a linear move irrigation system's above ground cable guidance system for steering, a wicket positioning system for stopping the machine at the indexing locations, and a wire-alignment system to control inner tower alignment. The system was tested over a length of 280 ft using a five tower, 575 ft long, linear move irrigation system. It was found that the above ground cable guidance system provided ±0.5 ft steering accuracy, the wicket positioning system controlled the power unit and end tower position within ±0.2 ft of the target destination, and that the wire alignment system controlled inner tower position within ±0.3 ft of the target destination. Statistical analysis of the test results showed the probability of position error being controlled to within ±0.4 ft and ±0.8 ft to be at the 99.7% and 99.99% confidence levels, respectively.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Agricultural.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineAgricultural and Biosystems Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCoates, Wayne E.en_US
dc.identifier.proquest9720615en_US
dc.identifier.bibrecord.b34542851en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.