Visible-light induced reactions in lamellar phospholipid assemblies

Persistent Link:
http://hdl.handle.net/10150/282185
Title:
Visible-light induced reactions in lamellar phospholipid assemblies
Author:
Clapp, Paula Jean, 1968-
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Cyanine photosensitizers are visible-light absorbing dyes commercially useful in photography and available in a variety of structures with tunable redox, absorptivity and excited state properties. The areas of research described in this dissertation all utilize cyanine dyes to photosensitize various processes to visible-light within the confines of lamellar phospholipid assemblies. In Chapter III, an efficient three component, liposome-bound photochemical molecular device for transfer of energy and electrons is described. A porphyrin (free base or metallated) serves as the energy donor, a cyanine functions as the energy acceptor/electron acceptor and Ph₃BnB- acts as an electron donor. In Chapter IV, the first example of visible-light sensitized bilayer polymerization is presented. Sensitizing the polymerization of two-dimensional lipid assemblies to visible-light is part of a current research effort to exploit the properties of polymerized supramolecular structures. Extending the polymerization sensitivity of such amphiphile aggregates to lower energy visible-light creates possibilities for applications where UV photolysis would not be useful. Applications of liposomes as drug delivery vehicles thus far have relied upon such release mechanisms as pH sensitivity or target specific interactions to empty the liposome contents to the cell. Chapter V describes a new system for the successful destabilization of liposomes at pH 4.5 via visible-light sensitive polymerization of lipids. Visible-light sensitized polymerization induces the release of liposome aqueous contents providing temporal and spatial control over the release event and lower energy irradiation with more tissue penetration than UV photolysis.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Chemistry, Biochemistry.; Chemistry, Organic.; Chemistry, Polymer.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
O'Brien, David F.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleVisible-light induced reactions in lamellar phospholipid assembliesen_US
dc.creatorClapp, Paula Jean, 1968-en_US
dc.contributor.authorClapp, Paula Jean, 1968-en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractCyanine photosensitizers are visible-light absorbing dyes commercially useful in photography and available in a variety of structures with tunable redox, absorptivity and excited state properties. The areas of research described in this dissertation all utilize cyanine dyes to photosensitize various processes to visible-light within the confines of lamellar phospholipid assemblies. In Chapter III, an efficient three component, liposome-bound photochemical molecular device for transfer of energy and electrons is described. A porphyrin (free base or metallated) serves as the energy donor, a cyanine functions as the energy acceptor/electron acceptor and Ph₃BnB- acts as an electron donor. In Chapter IV, the first example of visible-light sensitized bilayer polymerization is presented. Sensitizing the polymerization of two-dimensional lipid assemblies to visible-light is part of a current research effort to exploit the properties of polymerized supramolecular structures. Extending the polymerization sensitivity of such amphiphile aggregates to lower energy visible-light creates possibilities for applications where UV photolysis would not be useful. Applications of liposomes as drug delivery vehicles thus far have relied upon such release mechanisms as pH sensitivity or target specific interactions to empty the liposome contents to the cell. Chapter V describes a new system for the successful destabilization of liposomes at pH 4.5 via visible-light sensitive polymerization of lipids. Visible-light sensitized polymerization induces the release of liposome aqueous contents providing temporal and spatial control over the release event and lower energy irradiation with more tissue penetration than UV photolysis.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectChemistry, Biochemistry.en_US
dc.subjectChemistry, Organic.en_US
dc.subjectChemistry, Polymer.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorO'Brien, David F.en_US
dc.identifier.proquest9713434en_US
dc.identifier.bibrecord.b34449334en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.