Phylogenetic and ecological aspects of cooperative breeding in the bee-eaters (Aves: Meropidae)

Persistent Link:
http://hdl.handle.net/10150/282167
Title:
Phylogenetic and ecological aspects of cooperative breeding in the bee-eaters (Aves: Meropidae)
Author:
Burt, Donald Brent, 1965-
Issue Date:
1996
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Cooperative breeding (CB) is found in a wide diversity of avian lineages and can be explained at several levels of analysis. After a brief introduction to the theory explaining CB, I take an historical approach to examine CB evolution in the bee-eaters (Family Meropidae). Parsimony analyses of plumage color and shape characters yielded a number of phylogenetic hypotheses. The best supported phylogenies are six fully resolved trees from three analyses and a strict consensus tree from another analysis. These trees are used to examine the possible patterns of evolution in CB and how transition correspond to transitions in other ecological and behavioral traits. Bee-eaters were also studied in Thailand. Little green bee-eaters, Merops orientalis, breed cooperatively and predation pressure may be high in this species. Blue-tailed bee-eaters, M. philippinus, breed cooperatively in dense colonies and show signs of potential extra-pair copulation and intraspecific brood parasitism. Observations of the bay-headed bee-eater, M. leschenaulti, and the blue-bearded bee-eater, Nyctyornis athertoni, document CB in the former and support non-CB designation for the latter. Cooperative breeding is either primitive in bee-eaters or evolved early in the family. Reversals to non-CB occurred in one to three lineages. Transitions in breeding systems are not generally correlated with the transitions in nesting requirements, habitat utilization, migratory behavior, or diet. Evidence suggests correlated evolution between CB and both foraging mode (weak evidence) and social systems (stronger support). This study does not support any single hypothesis for the adaptive basis of CB across the family. Social system evolutionary patterns do suggest the importance of kin selection in several lineages. Lack of change in breeding systems, given diverse ecological and behavioral circumstances, means either cooperative breeding is malleable (selectively advantageous in a variety of ecological conditions) or represents phylogenetic inertia. A final analysis demonstrates that phylogenetic confidence indices fail to express the degree to which characters in a matrix are non-conflicting and congruent (for a given level of noise) and show only limited abilities to distinguish among probabilities of analyses making type II errors.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Biology, Ecology.; Biology, Zoology.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Ecology and Evolutionary Biology
Degree Grantor:
University of Arizona
Advisor:
Maddison, Wayne P.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titlePhylogenetic and ecological aspects of cooperative breeding in the bee-eaters (Aves: Meropidae)en_US
dc.creatorBurt, Donald Brent, 1965-en_US
dc.contributor.authorBurt, Donald Brent, 1965-en_US
dc.date.issued1996en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractCooperative breeding (CB) is found in a wide diversity of avian lineages and can be explained at several levels of analysis. After a brief introduction to the theory explaining CB, I take an historical approach to examine CB evolution in the bee-eaters (Family Meropidae). Parsimony analyses of plumage color and shape characters yielded a number of phylogenetic hypotheses. The best supported phylogenies are six fully resolved trees from three analyses and a strict consensus tree from another analysis. These trees are used to examine the possible patterns of evolution in CB and how transition correspond to transitions in other ecological and behavioral traits. Bee-eaters were also studied in Thailand. Little green bee-eaters, Merops orientalis, breed cooperatively and predation pressure may be high in this species. Blue-tailed bee-eaters, M. philippinus, breed cooperatively in dense colonies and show signs of potential extra-pair copulation and intraspecific brood parasitism. Observations of the bay-headed bee-eater, M. leschenaulti, and the blue-bearded bee-eater, Nyctyornis athertoni, document CB in the former and support non-CB designation for the latter. Cooperative breeding is either primitive in bee-eaters or evolved early in the family. Reversals to non-CB occurred in one to three lineages. Transitions in breeding systems are not generally correlated with the transitions in nesting requirements, habitat utilization, migratory behavior, or diet. Evidence suggests correlated evolution between CB and both foraging mode (weak evidence) and social systems (stronger support). This study does not support any single hypothesis for the adaptive basis of CB across the family. Social system evolutionary patterns do suggest the importance of kin selection in several lineages. Lack of change in breeding systems, given diverse ecological and behavioral circumstances, means either cooperative breeding is malleable (selectively advantageous in a variety of ecological conditions) or represents phylogenetic inertia. A final analysis demonstrates that phylogenetic confidence indices fail to express the degree to which characters in a matrix are non-conflicting and congruent (for a given level of noise) and show only limited abilities to distinguish among probabilities of analyses making type II errors.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectBiology, Ecology.en_US
dc.subjectBiology, Zoology.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineEcology and Evolutionary Biologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMaddison, Wayne P.en_US
dc.identifier.proquest9713401en_US
dc.identifier.bibrecord.b34401878en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.