Persistent Link:
http://hdl.handle.net/10150/282127
Title:
BINDING OF COPPER, ZINC AND IRON BY SIX DIETARY FIBER SOURCES
Author:
Thompson, Sue Angele
Issue Date:
1980
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Six dietary fiber sources, wheat bran, corn bran, soy bran, oat hulls, rice bran, and cellulose were examined with regard to their abilities to bind copper, zinc, and iron. Their chemical composition, some of their physical properties, and their in vivo action on mineral status in tissues of chicks were investigated. Also, a comparison of the physicochemical properties of neutral detergent treated (NDF) and pepsin-pancreatin treated (EIR) residues was made. The release of endogenous copper, zinc, and iron from the fiber sources was pH dependent. Greater amounts of minerals were released into solution at pH 0.65 than into solution at pH 6.8. After a sequential treatment of pH 0.65 solution, neutralization, then pH 6.8 buffer, the mineral levels in the residues were similar to those remaining in the residues after the near neutral treatment. This indicated that the minerals were rebound after the pH of the solution was raised from acidic to near neutral. The amount of zinc in the residues from the sequential treatment correlated positively to protein and phytic acid contents and negatively to NDF and EIR contents. Neither copper nor iron showed any significant correlations. Hydrogen ion buffering capacities were determined for three preparations of the six fiber sources: (1) untreated, original material; (2) NDF-treated; and (3) EIR-treated materials. The buffering capacities were expressed as functions of the slopes of titration curves, where the smaller the slope, the greater the buffering capacity. The treated preparations had lower buffering capacities than did the untreated preparation. The treatments reduced the amounts of digestible/soluble components, especially protein in the fiber sources. Protein content was strongly correlated to buffering capacity for the untreated and the EIR-treated preparations but not for the NDF-treated preparation. Wheat bran, soy bran, oat hulls, and cellulose were subjected to NDF and EIR treatments, and the residues were used as column material for cation exchange experiments. A factorial experiment was performed using fibers by treatments by three solutions. The solutions were copper alone, zinc alone, and copper-zinc in combination. Cation exchange capacities (CEC) and protein contents were also determined. The CEC values for the residues from the two treatments for wheat bran and cellulose were similar but were very different for the soy bran (EIR-treated CEC was higher than NDF-treated) and oat hulls (NDF much greater than EIR). More mmoles of copper were bound than zinc whether presented alone or in equimolar combination. Protein content correlated to mmoles mineral bound for only the NDF-treated residues and only when the minerals were presented singly. These in vitro experiments demonstrated the intrinsic differences of the fiber sources. One fiber source may be beneficial to nutritional status while another may be detrimental. The fiber isolation technique produced residues with different compositions and different physical properties. Future biochemical investigations of dietary fiber must acknowledge the possible divergence from physiological reality which results from the isolation methodology. The chick feeding study used diets which had the fiber sources added to be equivalent to the addition of 6% dietary fiber (as NDF). At this level, all the fiber sources, except rice bran, resulted in adequate growth and adequate deposition of tissue minerals. The chicks on the rice bran diet had lowered feed intakes, significantly reduced growth and significantly lower tibia zinc, iron, and manganese levels. One factor in the rice bran diet, which may have influenced the status of the chicks, was its phytic acid content which was the highest of the fiber sources. This in vivo experiment again indicates the dissimilarity in effects of the dietary fiber sources.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
High-fiber diet.; Food -- Mineral content.; Food -- Fiber content.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Nutritional Sciences
Degree Grantor:
University of Arizona
Advisor:
Weber, Charles W.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleBINDING OF COPPER, ZINC AND IRON BY SIX DIETARY FIBER SOURCESen_US
dc.creatorThompson, Sue Angeleen_US
dc.contributor.authorThompson, Sue Angeleen_US
dc.date.issued1980en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractSix dietary fiber sources, wheat bran, corn bran, soy bran, oat hulls, rice bran, and cellulose were examined with regard to their abilities to bind copper, zinc, and iron. Their chemical composition, some of their physical properties, and their in vivo action on mineral status in tissues of chicks were investigated. Also, a comparison of the physicochemical properties of neutral detergent treated (NDF) and pepsin-pancreatin treated (EIR) residues was made. The release of endogenous copper, zinc, and iron from the fiber sources was pH dependent. Greater amounts of minerals were released into solution at pH 0.65 than into solution at pH 6.8. After a sequential treatment of pH 0.65 solution, neutralization, then pH 6.8 buffer, the mineral levels in the residues were similar to those remaining in the residues after the near neutral treatment. This indicated that the minerals were rebound after the pH of the solution was raised from acidic to near neutral. The amount of zinc in the residues from the sequential treatment correlated positively to protein and phytic acid contents and negatively to NDF and EIR contents. Neither copper nor iron showed any significant correlations. Hydrogen ion buffering capacities were determined for three preparations of the six fiber sources: (1) untreated, original material; (2) NDF-treated; and (3) EIR-treated materials. The buffering capacities were expressed as functions of the slopes of titration curves, where the smaller the slope, the greater the buffering capacity. The treated preparations had lower buffering capacities than did the untreated preparation. The treatments reduced the amounts of digestible/soluble components, especially protein in the fiber sources. Protein content was strongly correlated to buffering capacity for the untreated and the EIR-treated preparations but not for the NDF-treated preparation. Wheat bran, soy bran, oat hulls, and cellulose were subjected to NDF and EIR treatments, and the residues were used as column material for cation exchange experiments. A factorial experiment was performed using fibers by treatments by three solutions. The solutions were copper alone, zinc alone, and copper-zinc in combination. Cation exchange capacities (CEC) and protein contents were also determined. The CEC values for the residues from the two treatments for wheat bran and cellulose were similar but were very different for the soy bran (EIR-treated CEC was higher than NDF-treated) and oat hulls (NDF much greater than EIR). More mmoles of copper were bound than zinc whether presented alone or in equimolar combination. Protein content correlated to mmoles mineral bound for only the NDF-treated residues and only when the minerals were presented singly. These in vitro experiments demonstrated the intrinsic differences of the fiber sources. One fiber source may be beneficial to nutritional status while another may be detrimental. The fiber isolation technique produced residues with different compositions and different physical properties. Future biochemical investigations of dietary fiber must acknowledge the possible divergence from physiological reality which results from the isolation methodology. The chick feeding study used diets which had the fiber sources added to be equivalent to the addition of 6% dietary fiber (as NDF). At this level, all the fiber sources, except rice bran, resulted in adequate growth and adequate deposition of tissue minerals. The chicks on the rice bran diet had lowered feed intakes, significantly reduced growth and significantly lower tibia zinc, iron, and manganese levels. One factor in the rice bran diet, which may have influenced the status of the chicks, was its phytic acid content which was the highest of the fiber sources. This in vivo experiment again indicates the dissimilarity in effects of the dietary fiber sources.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectHigh-fiber diet.en_US
dc.subjectFood -- Mineral content.en_US
dc.subjectFood -- Fiber content.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineNutritional Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWeber, Charles W.en_US
dc.identifier.proquest8017790en_US
dc.identifier.oclc7631450en_US
dc.identifier.bibrecord.b13472367en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.