STAR FORMATION IN THE RHO OPHIUCHI DARK CLOUD

Hdl Handle:
http://hdl.handle.net/10150/282023
Title:
STAR FORMATION IN THE RHO OPHIUCHI DARK CLOUD
Author:
Wilking, Bruce Alan
Issue Date:
1981
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
New and sensitive millimeter-wave and near-infrared observation have been performed in the central regions of the ρ Ophiuchi dark cloud. High spatial resolution observations of the optically thin C¹⁸O emission lines are shown to be free of self-absorption. They permit the first accurate determination of the distribution of molecular gas and allow us to estimate the mass and visual extinction in the cloud. A completely sampled near-infrared survey of a 105 sq. arcmin area which encloses the region of highest visual extinction has revealed twenty objects (sixteen were previously unknown). We show that these objects are young stars embedded in the cloud. Synthesizing our new observations with existing radio and infrared data, we have made a detailed study of the energetics and star formation process within the ρ Oph cloud. This dissertation concludes that the high temperatures of the molecular gas cannot be due to collisions with warm dust. The feasibility of alternate heat sources such as cosmic-ray ionization, shocks, and the distortion of magnetic fields are discussed. We derive high star formation efficiencies (32-46%) in the centrally condensed core of the ρ Oph cloud which suggests that it is forming a bound open cluster. The most consistent interpretation of our data requires that an efficient burst of star formation has produced a relatively large (with respect to the initial mass function) population of low luminosity stars in ρ Oph within the last 3 million years. At this present rate of star formation, most of the molecular gas will be converted into stars in about 10⁷ yr. yielding a bound cluster. Unless this rate rapidly decreases with time, the duration of star formation in the (rho) Oph cluster (10 million years) will be considerably shorter than that suggested for the Pleiades cluster (175 m. y). The lack of stars in the 3-10 M(⊙) range indicates that subsequent star formation must be dominated by more massive stars if the stellar mass spectrum of the ρ Oph cluster is to resemble that of the conventional initial mass function. The youth of the ρ Oph cluster suggests that it may be the most recent episode of star formation in the Sco-Cen OB association.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Stars -- Evolution.; Infrared astronomy.; Millimeter wave devices.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Planetary Sciences
Degree Grantor:
University of Arizona
Advisor:
Rieke, George

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleSTAR FORMATION IN THE RHO OPHIUCHI DARK CLOUDen_US
dc.creatorWilking, Bruce Alanen_US
dc.contributor.authorWilking, Bruce Alanen_US
dc.date.issued1981en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractNew and sensitive millimeter-wave and near-infrared observation have been performed in the central regions of the ρ Ophiuchi dark cloud. High spatial resolution observations of the optically thin C¹⁸O emission lines are shown to be free of self-absorption. They permit the first accurate determination of the distribution of molecular gas and allow us to estimate the mass and visual extinction in the cloud. A completely sampled near-infrared survey of a 105 sq. arcmin area which encloses the region of highest visual extinction has revealed twenty objects (sixteen were previously unknown). We show that these objects are young stars embedded in the cloud. Synthesizing our new observations with existing radio and infrared data, we have made a detailed study of the energetics and star formation process within the ρ Oph cloud. This dissertation concludes that the high temperatures of the molecular gas cannot be due to collisions with warm dust. The feasibility of alternate heat sources such as cosmic-ray ionization, shocks, and the distortion of magnetic fields are discussed. We derive high star formation efficiencies (32-46%) in the centrally condensed core of the ρ Oph cloud which suggests that it is forming a bound open cluster. The most consistent interpretation of our data requires that an efficient burst of star formation has produced a relatively large (with respect to the initial mass function) population of low luminosity stars in ρ Oph within the last 3 million years. At this present rate of star formation, most of the molecular gas will be converted into stars in about 10⁷ yr. yielding a bound cluster. Unless this rate rapidly decreases with time, the duration of star formation in the (rho) Oph cluster (10 million years) will be considerably shorter than that suggested for the Pleiades cluster (175 m. y). The lack of stars in the 3-10 M(⊙) range indicates that subsequent star formation must be dominated by more massive stars if the stellar mass spectrum of the ρ Oph cluster is to resemble that of the conventional initial mass function. The youth of the ρ Oph cluster suggests that it may be the most recent episode of star formation in the Sco-Cen OB association.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectStars -- Evolution.en_US
dc.subjectInfrared astronomy.en_US
dc.subjectMillimeter wave devices.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePlanetary Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRieke, Georgeen_US
dc.identifier.proquest8200323en_US
dc.identifier.oclc8710655en_US
dc.identifier.bibrecord.b13917365en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.