INVESTIGATION OF SPECTROSCOPIC PROPERTIES OF FLAMES AND PLASMAS VIA COMPUTER CONTROLLED INSTRUMENTATION

Persistent Link:
http://hdl.handle.net/10150/281998
Title:
INVESTIGATION OF SPECTROSCOPIC PROPERTIES OF FLAMES AND PLASMAS VIA COMPUTER CONTROLLED INSTRUMENTATION
Author:
Algeo, Donald John
Issue Date:
1981
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The Babington principle nebulizer, useful for the introduction of samples containing suspended solids, or having high viscosities, into flames or plasmas, has been developed and characterized. Smaller versions of the nebulizer have been shown to provide higher sensitivity and reduced memory relative to the larger devices used previously. Data showing the sensitivities observed with a Babington type nebulizer and a flame emission spectrophotometer at varying flow rates of both the nebulizing gas and the sample solution are presented, along with an evaluation of several nebulizer configurations and tip sytles. The effect of nebulizing gas orifice size upon sensitivity is discussed. Although the Babington principle nebulizer will tolerate samples of varying viscosity, the nebulization efficiency is affected by the sample solution viscosity. A Babington type nebulizer employing a sample heater has been constructed and evaluated using motor oils of differing grades, and has been shown to reduce the effect of viscosity for this class of samples. This heated Babington type nebulizer has been used to develop a method for the analysis of wear metals in oil which does not require sample pretreatment. The effect of polymeric viscosity index improving additives commonly added to motor oils on the sensitivity of the method has been explored, as well as the effect of different complexing agents which may be used in the preparation of standards. A new method is described for numerically evaluating the inverted Abel integral equation, used to extract information about interior regions of flames and plasmas from spatially resolved data obtained from side-on measurements. This method, based upon cubic spline approximations, is compared to modifications of two methods drawn from the literature over a range of data set sizes and with varying amounts of noise superimposed upon the signal. The results of this study give a basis for selecting the best method for transforming experimental data of varying quality, and also for estimating the reliability of the results of the computation. An appendix describes the design and development of an instrument, computer interface, and software package which allow spatial mapping of spectroscopic sources at high speed. Suggestions are given for future work in these areas.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Plasma spectroscopy -- Data processing.; Flame spectroscopy -- Data processing.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Denton, M. Bonner

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleINVESTIGATION OF SPECTROSCOPIC PROPERTIES OF FLAMES AND PLASMAS VIA COMPUTER CONTROLLED INSTRUMENTATIONen_US
dc.creatorAlgeo, Donald Johnen_US
dc.contributor.authorAlgeo, Donald Johnen_US
dc.date.issued1981en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe Babington principle nebulizer, useful for the introduction of samples containing suspended solids, or having high viscosities, into flames or plasmas, has been developed and characterized. Smaller versions of the nebulizer have been shown to provide higher sensitivity and reduced memory relative to the larger devices used previously. Data showing the sensitivities observed with a Babington type nebulizer and a flame emission spectrophotometer at varying flow rates of both the nebulizing gas and the sample solution are presented, along with an evaluation of several nebulizer configurations and tip sytles. The effect of nebulizing gas orifice size upon sensitivity is discussed. Although the Babington principle nebulizer will tolerate samples of varying viscosity, the nebulization efficiency is affected by the sample solution viscosity. A Babington type nebulizer employing a sample heater has been constructed and evaluated using motor oils of differing grades, and has been shown to reduce the effect of viscosity for this class of samples. This heated Babington type nebulizer has been used to develop a method for the analysis of wear metals in oil which does not require sample pretreatment. The effect of polymeric viscosity index improving additives commonly added to motor oils on the sensitivity of the method has been explored, as well as the effect of different complexing agents which may be used in the preparation of standards. A new method is described for numerically evaluating the inverted Abel integral equation, used to extract information about interior regions of flames and plasmas from spatially resolved data obtained from side-on measurements. This method, based upon cubic spline approximations, is compared to modifications of two methods drawn from the literature over a range of data set sizes and with varying amounts of noise superimposed upon the signal. The results of this study give a basis for selecting the best method for transforming experimental data of varying quality, and also for estimating the reliability of the results of the computation. An appendix describes the design and development of an instrument, computer interface, and software package which allow spatial mapping of spectroscopic sources at high speed. Suggestions are given for future work in these areas.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPlasma spectroscopy -- Data processing.en_US
dc.subjectFlame spectroscopy -- Data processing.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorDenton, M. Bonneren_US
dc.identifier.proquest8125750en_US
dc.identifier.oclc8623590en_US
dc.identifier.bibrecord.b13878530en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.