THE EFFECT OF COHERENT MAGNETIC BREAKDOWN ON THE DE HAAS - VAN ALPHEN EFFECT IN MAGNESIUM

Persistent Link:
http://hdl.handle.net/10150/281938
Title:
THE EFFECT OF COHERENT MAGNETIC BREAKDOWN ON THE DE HAAS - VAN ALPHEN EFFECT IN MAGNESIUM
Author:
Eddy, James Walter
Issue Date:
1980
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
We report here the results of a de Haas-van Alphen (dHvA) investigation of the coupled orbit system in magnesium. The data were taken for magnetic fields extending to 52 kG and temperatures down to 0.29° K. The experimental data are interpreted in the light of coupled orbit system theories of Pippard and of Falicov and Stachowiak; these are each reviewed in some detail. The data are found to disagree qualitatively with the predictions of Falicov and Stachowiak. Since this theory has been assumed, for more than a decade, to be equivalent to Pippard's theory, a detailed comparison of these was made. Full spectrum Fourier analysis of Pippard's band structure density of states shows that the two models disagree qualitatively and, therefore, that they are not equivalent. These experimental results, which do not appear to disagree with Pippard's theory, are interpreted to mean that it is fnally possible to obtain crystals of sufficient purity and perfection to make it necessary to use a band structure description of the delocalized electrons on the couple network. Evidence is presented for the existence of a new type of dHvA frequency corresponding to the ΓKM plane cross-section of the Brillouin zone. A proposed explanation for this dHvA frequency involves the field dependent modulation of the zero frequency component of the Fourier transform of the coupled orbit system density of states. Also included are discussions of crystal preparation and handling, cryogenic apparatus, analogue detection apparatus, digital data acquisition and processing hardware based on a microcomputer, and a new software system ideally suited to small computer research environments.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Magnesium -- Magnetic properties.; Fermi surfaces.; Atomic orbitals.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Physics
Degree Grantor:
University of Arizona
Advisor:
Stark, Royal W.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleTHE EFFECT OF COHERENT MAGNETIC BREAKDOWN ON THE DE HAAS - VAN ALPHEN EFFECT IN MAGNESIUMen_US
dc.creatorEddy, James Walteren_US
dc.contributor.authorEddy, James Walteren_US
dc.date.issued1980en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWe report here the results of a de Haas-van Alphen (dHvA) investigation of the coupled orbit system in magnesium. The data were taken for magnetic fields extending to 52 kG and temperatures down to 0.29° K. The experimental data are interpreted in the light of coupled orbit system theories of Pippard and of Falicov and Stachowiak; these are each reviewed in some detail. The data are found to disagree qualitatively with the predictions of Falicov and Stachowiak. Since this theory has been assumed, for more than a decade, to be equivalent to Pippard's theory, a detailed comparison of these was made. Full spectrum Fourier analysis of Pippard's band structure density of states shows that the two models disagree qualitatively and, therefore, that they are not equivalent. These experimental results, which do not appear to disagree with Pippard's theory, are interpreted to mean that it is fnally possible to obtain crystals of sufficient purity and perfection to make it necessary to use a band structure description of the delocalized electrons on the couple network. Evidence is presented for the existence of a new type of dHvA frequency corresponding to the ΓKM plane cross-section of the Brillouin zone. A proposed explanation for this dHvA frequency involves the field dependent modulation of the zero frequency component of the Fourier transform of the coupled orbit system density of states. Also included are discussions of crystal preparation and handling, cryogenic apparatus, analogue detection apparatus, digital data acquisition and processing hardware based on a microcomputer, and a new software system ideally suited to small computer research environments.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectMagnesium -- Magnetic properties.en_US
dc.subjectFermi surfaces.en_US
dc.subjectAtomic orbitals.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorStark, Royal W.en_US
dc.identifier.proquest8017764en_US
dc.identifier.oclc7641661en_US
dc.identifier.bibrecord.b13474935en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.