Dissolution, corrosion and environmental issues in chemical mechanical planarization of copper

Persistent Link:
http://hdl.handle.net/10150/280774
Title:
Dissolution, corrosion and environmental issues in chemical mechanical planarization of copper
Author:
Tamilmani, Subramanian
Issue Date:
2005
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Chemical mechanical polishing (CMP) of dielectric and metal films has become a key process in manufacturing devices with ultra large scale integration (ULSI). In a CMP process, planarization is achieved by polishing a wafer with uneven topography using colloidal slurry consisting of sub-micron sized abrasive particles, oxidant and various additives. Hydrogen peroxide and hydroxylamine are commonly used oxidants in copper CMP process. To achieve planarization, the low lying areas have to be protected while the higher areas are polished away. This requires low static dissolution rate of copper in low areas. Another major issue in copper CMP is galvanic corrosion during barrier polishing step where both copper and the barrier metal are exposed to the slurry. The main goal of the research reported in this dissertation is to understand the dissolution and corrosion issues during the removal of copper in hydroxylamine based chemistries. Electrochemical and physical methods such as profilometry were used to obtain copper removal rates. Among the variety of organic compound tested, benzotriazole and salicylhydroxamic acid were identified as potential corrosion inhibitors for copper. The passive film formed on the copper surface by the addition of benzotriazole and salicylhydroxamic acid was characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The passivation and repassivation kinetics were investigated in detail and a passivation mechanism for copper in hydroxylamine in the presence of benzotriazole and salicylhydroxamic acid chemistries is proposed. Copper removal experiments were performed on a specially designed electrochemical abrasion cell (EC-AC) in the presence and absence of inhibitors. The effect of anodic potentials on the dissolution of copper in various chemistries was studied to identify suitable conditions for electro-chemical mechanical planarization process. The extent of galvanic corrosion between copper and tantalum was estimated using electrochemical polarization measurements. A novel setup was designed to make direct measurement of the galvanic current between copper and tantalum and was successfully used to measure galvanic current in various chemical systems. CMP and post CMP cleaning operations account for almost twenty five percent of the total water usage at semiconductor fabrication plants. The waste water has to be treated to remove copper and unused oxidants and organic additives before it can be recycled or disposed. Fundamental studies on the treatment of copper CMP waste water using boron doped diamond electrodes was performed. The feasibility of copper deposition and organic oxidation was established and a design for a novel reactor is proposed.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Chemical.; Engineering, Materials Science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Materials Science and Engineering
Degree Grantor:
University of Arizona
Advisor:
Raghavan, Srini

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleDissolution, corrosion and environmental issues in chemical mechanical planarization of copperen_US
dc.creatorTamilmani, Subramanianen_US
dc.contributor.authorTamilmani, Subramanianen_US
dc.date.issued2005en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractChemical mechanical polishing (CMP) of dielectric and metal films has become a key process in manufacturing devices with ultra large scale integration (ULSI). In a CMP process, planarization is achieved by polishing a wafer with uneven topography using colloidal slurry consisting of sub-micron sized abrasive particles, oxidant and various additives. Hydrogen peroxide and hydroxylamine are commonly used oxidants in copper CMP process. To achieve planarization, the low lying areas have to be protected while the higher areas are polished away. This requires low static dissolution rate of copper in low areas. Another major issue in copper CMP is galvanic corrosion during barrier polishing step where both copper and the barrier metal are exposed to the slurry. The main goal of the research reported in this dissertation is to understand the dissolution and corrosion issues during the removal of copper in hydroxylamine based chemistries. Electrochemical and physical methods such as profilometry were used to obtain copper removal rates. Among the variety of organic compound tested, benzotriazole and salicylhydroxamic acid were identified as potential corrosion inhibitors for copper. The passive film formed on the copper surface by the addition of benzotriazole and salicylhydroxamic acid was characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The passivation and repassivation kinetics were investigated in detail and a passivation mechanism for copper in hydroxylamine in the presence of benzotriazole and salicylhydroxamic acid chemistries is proposed. Copper removal experiments were performed on a specially designed electrochemical abrasion cell (EC-AC) in the presence and absence of inhibitors. The effect of anodic potentials on the dissolution of copper in various chemistries was studied to identify suitable conditions for electro-chemical mechanical planarization process. The extent of galvanic corrosion between copper and tantalum was estimated using electrochemical polarization measurements. A novel setup was designed to make direct measurement of the galvanic current between copper and tantalum and was successfully used to measure galvanic current in various chemical systems. CMP and post CMP cleaning operations account for almost twenty five percent of the total water usage at semiconductor fabrication plants. The waste water has to be treated to remove copper and unused oxidants and organic additives before it can be recycled or disposed. Fundamental studies on the treatment of copper CMP waste water using boron doped diamond electrodes was performed. The feasibility of copper deposition and organic oxidation was established and a design for a novel reactor is proposed.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Chemical.en_US
dc.subjectEngineering, Materials Science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMaterials Science and Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRaghavan, Srinien_US
dc.identifier.proquest3158218en_US
dc.identifier.bibrecord.b4813840xen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.