Persistent Link:
http://hdl.handle.net/10150/280756
Title:
Finite element mesh optimization using genetic algorithms
Author:
Tonoyan, Arsen V.
Issue Date:
2004
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In finite element analysis, structures are modeled as meshes of elements and nodes appropriate for the geometry, boundaries and loading of each structure. Typically, it is desirable to have a mesh which is finer in parts of the structure where stress gradients are high and coarser where such gradients are low. This is usually done by experienced engineers using intuition and previous experience. Otherwise, a fine mesh throughout the structure can be used which results in high computational costs. In this work, the possibility of using genetic algorithms for optimizing finite-element meshes is studied. The method is implemented on a number of simple loaded structures. The meshes used are generated using a number of parameters that can be varied randomly. Then the parameters are varied using operators appropriate to genetic algorithms such that the value of an objective function is minimized within a defined precision and iteration limit. The objective function used in this study is an energy-based error norm. The results obtained with this method are compared to those obtained from a commercial finite element package that incorporates its own mesh optimization algorithms.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Applied Mechanics.; Engineering, Mechanical.; Computer Science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Aerospace and Mechanical Engineering
Degree Grantor:
University of Arizona
Advisor:
Arabyan, Ara

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleFinite element mesh optimization using genetic algorithmsen_US
dc.creatorTonoyan, Arsen V.en_US
dc.contributor.authorTonoyan, Arsen V.en_US
dc.date.issued2004en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn finite element analysis, structures are modeled as meshes of elements and nodes appropriate for the geometry, boundaries and loading of each structure. Typically, it is desirable to have a mesh which is finer in parts of the structure where stress gradients are high and coarser where such gradients are low. This is usually done by experienced engineers using intuition and previous experience. Otherwise, a fine mesh throughout the structure can be used which results in high computational costs. In this work, the possibility of using genetic algorithms for optimizing finite-element meshes is studied. The method is implemented on a number of simple loaded structures. The meshes used are generated using a number of parameters that can be varied randomly. Then the parameters are varied using operators appropriate to genetic algorithms such that the value of an objective function is minimized within a defined precision and iteration limit. The objective function used in this study is an energy-based error norm. The results obtained with this method are compared to those obtained from a commercial finite element package that incorporates its own mesh optimization algorithms.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectApplied Mechanics.en_US
dc.subjectEngineering, Mechanical.en_US
dc.subjectComputer Science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineAerospace and Mechanical Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorArabyan, Araen_US
dc.identifier.proquest3158164en_US
dc.identifier.bibrecord.b48138137en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.