In-service health assessment of real structures at the element level with unknown input and limited global responses

Persistent Link:
http://hdl.handle.net/10150/280710
Title:
In-service health assessment of real structures at the element level with unknown input and limited global responses
Author:
Katkhuda, Hasan Nabil
Issue Date:
2004
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A novel nondestructive defect detection procedure is proposed for the health assessment of existing structures. The procedure can also be used to evaluate the health of structures just after natural events like strong earthquakes or high winds, or after a man-made event like explosion. The procedure is essentially a time domain system identification technique. The two most important features of the method are that it does not need excitation information to identify a structural system and it can identify defects at the local element level using noise-contaminated limited response information, i.e., responses need not be available at all dynamic degrees of freedoms. Any structure that can be represented by finite elements can be identified by this method. The method identifies defects by tracking the changes in the stiffness of the structural elements in the finite element representation. Once a defective element is identified, it can locate the defect spot more accurately within the defective element. The method is denoted as the Generalized Iterative Least-Square Extended Kalman Filter with Unknown Input (GILS-EKF-UI). Since the Kalman filter-based algorithm requires information on excitation force and initial state vector, the GILS-EKF-UI technique consists of two stages. In the first stage, based on the response information, a sub-structure model is developed that satisfying all the requirements for the generalized ILS-UI method. The unknown excitation force f(t) and all the elements in the substructure are identified. The identified stiffness and damping coefficients provide information on the initial values of the state vectors. In the second stage, the EKF-WGI method is used to identify the whole structure since all the information required to implement the EKF-WGI method is now available from Stage 1. With the help of numerous examples, the GILS-EKF-UI method was verified for relatively small and large structures in the presence of noise in the responses. It can detect relatively small defects. The study also helps to define the minimum response information required to implement the Kalman filter-based algorithm. The method is very accurate, robust, and economical and has a potential to be a non-destructive defect evaluation technique.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Engineering, Civil.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Civil Engineering and Engineering Mechanics
Degree Grantor:
University of Arizona
Advisor:
Haldar, Achintya

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleIn-service health assessment of real structures at the element level with unknown input and limited global responsesen_US
dc.creatorKatkhuda, Hasan Nabilen_US
dc.contributor.authorKatkhuda, Hasan Nabilen_US
dc.date.issued2004en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA novel nondestructive defect detection procedure is proposed for the health assessment of existing structures. The procedure can also be used to evaluate the health of structures just after natural events like strong earthquakes or high winds, or after a man-made event like explosion. The procedure is essentially a time domain system identification technique. The two most important features of the method are that it does not need excitation information to identify a structural system and it can identify defects at the local element level using noise-contaminated limited response information, i.e., responses need not be available at all dynamic degrees of freedoms. Any structure that can be represented by finite elements can be identified by this method. The method identifies defects by tracking the changes in the stiffness of the structural elements in the finite element representation. Once a defective element is identified, it can locate the defect spot more accurately within the defective element. The method is denoted as the Generalized Iterative Least-Square Extended Kalman Filter with Unknown Input (GILS-EKF-UI). Since the Kalman filter-based algorithm requires information on excitation force and initial state vector, the GILS-EKF-UI technique consists of two stages. In the first stage, based on the response information, a sub-structure model is developed that satisfying all the requirements for the generalized ILS-UI method. The unknown excitation force f(t) and all the elements in the substructure are identified. The identified stiffness and damping coefficients provide information on the initial values of the state vectors. In the second stage, the EKF-WGI method is used to identify the whole structure since all the information required to implement the EKF-WGI method is now available from Stage 1. With the help of numerous examples, the GILS-EKF-UI method was verified for relatively small and large structures in the presence of noise in the responses. It can detect relatively small defects. The study also helps to define the minimum response information required to implement the Kalman filter-based algorithm. The method is very accurate, robust, and economical and has a potential to be a non-destructive defect evaluation technique.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectEngineering, Civil.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineCivil Engineering and Engineering Mechanicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHaldar, Achintyaen_US
dc.identifier.proquest3158108en_US
dc.identifier.bibrecord.b4813787xen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.