Applications of scanning probe microscopy to data storage and Raman spectroscopy

Persistent Link:
http://hdl.handle.net/10150/280668
Title:
Applications of scanning probe microscopy to data storage and Raman spectroscopy
Author:
Zhao, Yanming
Issue Date:
2004
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Scanning Probe Microscopy (SPM) has been proven to be a powerful tool for imaging and lithography with nanometer resolution. The application of SPM to data storage may produce aerial storage densities far greater than what is currently available. As an effort in this direction, the properties of reversible transitions on the molecular scale in a complex of 3-nitrobenzal malononitrile and 1,4-phenylenediamine have been studied, by application of local electric field pulses from a SPM probe. Current pulses injection during the operation of a conducting-tip tapping-mode atomic force microscope has also been developed. Combination of these two techniques should be of importance for MEMS-based data storage. Another effort of ours is to develop an experimental configuration by combining the analytical power of Raman spectroscopy with the nanometer resolution of atomic force microscopy (AFM). Here, an AFM silicon nitride probe, coated with a 40 nm silver layer, was used to significantly enhance the Raman signal by laser excitation of surface plasmons in the tip coating. Experimental results indicate a local surface enhanced Raman scattering (SERS) increase of 105. Lateral scanning of the sample and collecting the SERS signal allows for a 2D image of the chemical identity of the probed sample simultaneous with its topography as measured by the AFM. Also, the ratio of Stokes to anti-Stokes can be used to obtain an absolute map of the local temperature across the sample.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Optics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Sarid, Dror

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleApplications of scanning probe microscopy to data storage and Raman spectroscopyen_US
dc.creatorZhao, Yanmingen_US
dc.contributor.authorZhao, Yanmingen_US
dc.date.issued2004en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractScanning Probe Microscopy (SPM) has been proven to be a powerful tool for imaging and lithography with nanometer resolution. The application of SPM to data storage may produce aerial storage densities far greater than what is currently available. As an effort in this direction, the properties of reversible transitions on the molecular scale in a complex of 3-nitrobenzal malononitrile and 1,4-phenylenediamine have been studied, by application of local electric field pulses from a SPM probe. Current pulses injection during the operation of a conducting-tip tapping-mode atomic force microscope has also been developed. Combination of these two techniques should be of importance for MEMS-based data storage. Another effort of ours is to develop an experimental configuration by combining the analytical power of Raman spectroscopy with the nanometer resolution of atomic force microscopy (AFM). Here, an AFM silicon nitride probe, coated with a 40 nm silver layer, was used to significantly enhance the Raman signal by laser excitation of surface plasmons in the tip coating. Experimental results indicate a local surface enhanced Raman scattering (SERS) increase of 105. Lateral scanning of the sample and collecting the SERS signal allows for a 2D image of the chemical identity of the probed sample simultaneous with its topography as measured by the AFM. Also, the ratio of Stokes to anti-Stokes can be used to obtain an absolute map of the local temperature across the sample.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Optics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSarid, Droren_US
dc.identifier.proquest3145150en_US
dc.identifier.bibrecord.b47213723en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.