Rotational spectra and molecular structures of organometallic and organic molecules

Persistent Link:
http://hdl.handle.net/10150/280570
Title:
Rotational spectra and molecular structures of organometallic and organic molecules
Author:
Tanjaroon, Chakree
Issue Date:
2004
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Understanding the nature of chemical bonds constitutes a major theme of this thesis. This thesis investigates the gas phase rotational spectra, electronic charge distributions and molecular structures of organometallic and organic molecules, using high-resolution pulsed beam Fourier transform microwave spectroscopy (PBFTMS) and computational methods. High-resolution rotational spectra and structural parameters were obtained for the following organometallic molecules in the singlet electronic state, including three symmetric and five asymmetric top complexes: C₅H₅Nb(CO)₄, CH₃Mn(CO)₅, MnRe(CO)₁₀, C₅H₅Mo(CO)₃H, C₅H₅W(CO)₃H, C₅H₅NiC₃H₅, C5H₄(CH₃)FeC₅H₅ and (C₅H₄(CH₃))₂Fe. High-resolution rotational spectra and structural parameters were obtained for three organic molecules in the singlet electronic state: ortho-benzyne (C₆H₄) and the keto-enol tautomers, 2-hydroxypyridine and 2-pyridone (C₅H₅NO). In addition to the tautomeric forms, pure rotational spectra of the H-bonded dimer, 2-hydroxypyridine:2-pyridinone, were also obtained. These detailed spectral investigations yielded novel and useful information about the molecular properties of these molecules. Primarily, these results provided information regarding chemical bonding, vibrational ground state structures, structural isomers, conformational behavior, metal-hydrogen bonding and electronic charge distributions. Density functional theory (DFT) and ab-initio calculations were carried out in conjunction with the experiments, providing additional insights into further understanding the equilibrium structures, structural isomers and the electric field gradient distributions for these molecules.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Chemistry, Physical.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Kukolich, Stephen G.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleRotational spectra and molecular structures of organometallic and organic moleculesen_US
dc.creatorTanjaroon, Chakreeen_US
dc.contributor.authorTanjaroon, Chakreeen_US
dc.date.issued2004en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractUnderstanding the nature of chemical bonds constitutes a major theme of this thesis. This thesis investigates the gas phase rotational spectra, electronic charge distributions and molecular structures of organometallic and organic molecules, using high-resolution pulsed beam Fourier transform microwave spectroscopy (PBFTMS) and computational methods. High-resolution rotational spectra and structural parameters were obtained for the following organometallic molecules in the singlet electronic state, including three symmetric and five asymmetric top complexes: C₅H₅Nb(CO)₄, CH₃Mn(CO)₅, MnRe(CO)₁₀, C₅H₅Mo(CO)₃H, C₅H₅W(CO)₃H, C₅H₅NiC₃H₅, C5H₄(CH₃)FeC₅H₅ and (C₅H₄(CH₃))₂Fe. High-resolution rotational spectra and structural parameters were obtained for three organic molecules in the singlet electronic state: ortho-benzyne (C₆H₄) and the keto-enol tautomers, 2-hydroxypyridine and 2-pyridone (C₅H₅NO). In addition to the tautomeric forms, pure rotational spectra of the H-bonded dimer, 2-hydroxypyridine:2-pyridinone, were also obtained. These detailed spectral investigations yielded novel and useful information about the molecular properties of these molecules. Primarily, these results provided information regarding chemical bonding, vibrational ground state structures, structural isomers, conformational behavior, metal-hydrogen bonding and electronic charge distributions. Density functional theory (DFT) and ab-initio calculations were carried out in conjunction with the experiments, providing additional insights into further understanding the equilibrium structures, structural isomers and the electric field gradient distributions for these molecules.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectChemistry, Physical.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorKukolich, Stephen G.en_US
dc.identifier.proquest3132261en_US
dc.identifier.bibrecord.b46707645en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.