Parallel discrete event simulation with application to continuous systems

Persistent Link:
http://hdl.handle.net/10150/280490
Title:
Parallel discrete event simulation with application to continuous systems
Author:
Nutaro, James Joseph
Issue Date:
2003
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Recent advances in discrete event modeling of continuous systems have emphasized the need for high performance simulation engines. This need is particularly acute when discrete event methods are applied to the numerical solution of partial differential equations. Accurate approximations can require thousands, or even millions, of cells. The corresponding requirements for memory and computing power can readily exceed what is available on a single processor computer. Discrete event simulations are characterized by asynchronous and irregular, random, or data dependent behavior. This makes parallel algorithm design particularly challenging. Known parallel discrete event simulation algorithms have been developed in terms of event and process oriented world views. In contrast to this, the Discrete Event System Specification (DEVS) forms the foundation of research into discrete event approximations of continuous systems. While event and process oriented models can be expressed in terms of the DEVS modeling formalism, there are DEVS models that do not seem to have an equivalent representation in the event or process oriented world views. This leaves open the question of how existing parallel discrete event simulation algorithms must be adapted in order to simulate DEVS models. In this dissertation, discrete simulation algorithms are built up from the basic definition of a discrete event system. The parallel algorithms that are developed through this approach are shown to operate correctly. To conclude this study, these algorithms are applied to producing numerical solutions of a hyperbolic conservation law (Sod's shock tube problem) and the wave equation.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Computer Science.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Electrical and Computer Enigneering
Degree Grantor:
University of Arizona
Advisor:
Zeigler, Bernard P.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleParallel discrete event simulation with application to continuous systemsen_US
dc.creatorNutaro, James Josephen_US
dc.contributor.authorNutaro, James Josephen_US
dc.date.issued2003en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractRecent advances in discrete event modeling of continuous systems have emphasized the need for high performance simulation engines. This need is particularly acute when discrete event methods are applied to the numerical solution of partial differential equations. Accurate approximations can require thousands, or even millions, of cells. The corresponding requirements for memory and computing power can readily exceed what is available on a single processor computer. Discrete event simulations are characterized by asynchronous and irregular, random, or data dependent behavior. This makes parallel algorithm design particularly challenging. Known parallel discrete event simulation algorithms have been developed in terms of event and process oriented world views. In contrast to this, the Discrete Event System Specification (DEVS) forms the foundation of research into discrete event approximations of continuous systems. While event and process oriented models can be expressed in terms of the DEVS modeling formalism, there are DEVS models that do not seem to have an equivalent representation in the event or process oriented world views. This leaves open the question of how existing parallel discrete event simulation algorithms must be adapted in order to simulate DEVS models. In this dissertation, discrete simulation algorithms are built up from the basic definition of a discrete event system. The parallel algorithms that are developed through this approach are shown to operate correctly. To conclude this study, these algorithms are applied to producing numerical solutions of a hyperbolic conservation law (Sod's shock tube problem) and the wave equation.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectComputer Science.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Enigneeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorZeigler, Bernard P.en_US
dc.identifier.proquest3119971en_US
dc.identifier.bibrecord.b45645498en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.