Remote and in situ measurements of soil and vegetation water content

Persistent Link:
http://hdl.handle.net/10150/280356
Title:
Remote and in situ measurements of soil and vegetation water content
Author:
Harlow, Robert C.
Issue Date:
2003
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Accurate estimates of soil moisture are necessary to predict evapotranspiration, runoff, infiltration, and groundwater recharge and, through these variables, weather, climate, and fire and flood frequencies. This dissertation is motivated by the need to estimate soil water content from remotely sensed passive microwave emission. Two different approaches are taken: (1) improved modeling of the microwave emission from the land surface; and (2) measurements of the average dielectric properties of the soil media and vegetation canopies. Consequently, the first part of the dissertation describes how a stratified dielectric model of the microwave emission from the soil was extended to take into account the effects of vegetation. The model parameters were calibrated using observed data and a robust optimization routine. However, the availability of measurements of some of these parameters, particularly the profile of dielectric permittivity of the canopy, would facilitate a more complete evaluation of the accuracy of the extended microwave emission model. The second part of this dissertation describes progress towards the development of a technique to measure the dielectric of vegetation canopies. This technique is based on gated time domain transmission measurements through the substance of interest. Preliminary studies carried out using soils with varying salinity and water content and vegetation show (1) an unexpected response of the signal to saline soils, and (2) a possible dielectric signature of the onset of stress in plant stems.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Geophysics.; Geotechnology.; Engineering, Electronics and Electrical.; Remote Sensing.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Hydrology and Water Resources
Degree Grantor:
University of Arizona
Advisor:
Shuttleworth, W. James; Ferre, Ty P. A.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleRemote and in situ measurements of soil and vegetation water contenten_US
dc.creatorHarlow, Robert C.en_US
dc.contributor.authorHarlow, Robert C.en_US
dc.date.issued2003en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAccurate estimates of soil moisture are necessary to predict evapotranspiration, runoff, infiltration, and groundwater recharge and, through these variables, weather, climate, and fire and flood frequencies. This dissertation is motivated by the need to estimate soil water content from remotely sensed passive microwave emission. Two different approaches are taken: (1) improved modeling of the microwave emission from the land surface; and (2) measurements of the average dielectric properties of the soil media and vegetation canopies. Consequently, the first part of the dissertation describes how a stratified dielectric model of the microwave emission from the soil was extended to take into account the effects of vegetation. The model parameters were calibrated using observed data and a robust optimization routine. However, the availability of measurements of some of these parameters, particularly the profile of dielectric permittivity of the canopy, would facilitate a more complete evaluation of the accuracy of the extended microwave emission model. The second part of this dissertation describes progress towards the development of a technique to measure the dielectric of vegetation canopies. This technique is based on gated time domain transmission measurements through the substance of interest. Preliminary studies carried out using soils with varying salinity and water content and vegetation show (1) an unexpected response of the signal to saline soils, and (2) a possible dielectric signature of the onset of stress in plant stems.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectGeophysics.en_US
dc.subjectGeotechnology.en_US
dc.subjectEngineering, Electronics and Electrical.en_US
dc.subjectRemote Sensing.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineHydrology and Water Resourcesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorShuttleworth, W. Jamesen_US
dc.contributor.advisorFerre, Ty P. A.en_US
dc.identifier.proquest3106996en_US
dc.identifier.bibrecord.b44660480en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.