Fabrication and characterization of erbium doped waveguide amplifiers and lasers

Persistent Link:
http://hdl.handle.net/10150/280304
Title:
Fabrication and characterization of erbium doped waveguide amplifiers and lasers
Author:
Madasamy, Pratheepan
Issue Date:
2003
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Planar waveguide amplifiers and lasers were fabricated using Ag film ion exchange on Er³⁺/Yb³⁺ codoped phosphate glass. The performance of these amplifiers and lasers were studied and characterized. Silver film ion exchange process was thoroughly studied and a process suitable for fabrication of low loss waveguides on Er³⁺/Yb³⁺ codoped phosphate glass was developed. A transmission loss of 0.15 dB/cm was obtained in surface waveguides on phosphate glass. Planar waveguide amplifiers were fabricated on Er³⁺/Yb³⁺ codoped phosphate glass and characterized. A net gain of 7 dB in a sample of length 4.7 cm and gain/cm of 1.5 dB/cm were achieved. Single mode waveguide laser arrays pumped by single mode laser diodes were fabricated. Their performance was characterized in terms of the output power, spectrum of the laser, lasing wavelength dependence on the waveguide width and the relative intensity noise (RIN) of the laser. The tunability of the lasing wavelength to the desired wavelength, after waveguide fabrication, by annealing was demonstrated. A novel planar waveguide laser configuration for single-mode operation around 1550 nm using cost-effective multimode diode pumping was demonstrated. The laser was fabricated by Ag film ion exchange in a hybrid phosphate glass which has active and passive regions monolithically integrated in a single glass chip. Power of 54 mW at 1538 nm was measured from the single-mode output waveguide.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Physics, Optics.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Peyghambarian, Nasser

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleFabrication and characterization of erbium doped waveguide amplifiers and lasersen_US
dc.creatorMadasamy, Pratheepanen_US
dc.contributor.authorMadasamy, Pratheepanen_US
dc.date.issued2003en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractPlanar waveguide amplifiers and lasers were fabricated using Ag film ion exchange on Er³⁺/Yb³⁺ codoped phosphate glass. The performance of these amplifiers and lasers were studied and characterized. Silver film ion exchange process was thoroughly studied and a process suitable for fabrication of low loss waveguides on Er³⁺/Yb³⁺ codoped phosphate glass was developed. A transmission loss of 0.15 dB/cm was obtained in surface waveguides on phosphate glass. Planar waveguide amplifiers were fabricated on Er³⁺/Yb³⁺ codoped phosphate glass and characterized. A net gain of 7 dB in a sample of length 4.7 cm and gain/cm of 1.5 dB/cm were achieved. Single mode waveguide laser arrays pumped by single mode laser diodes were fabricated. Their performance was characterized in terms of the output power, spectrum of the laser, lasing wavelength dependence on the waveguide width and the relative intensity noise (RIN) of the laser. The tunability of the lasing wavelength to the desired wavelength, after waveguide fabrication, by annealing was demonstrated. A novel planar waveguide laser configuration for single-mode operation around 1550 nm using cost-effective multimode diode pumping was demonstrated. The laser was fabricated by Ag film ion exchange in a hybrid phosphate glass which has active and passive regions monolithically integrated in a single glass chip. Power of 54 mW at 1538 nm was measured from the single-mode output waveguide.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectPhysics, Optics.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPeyghambarian, Nasseren_US
dc.identifier.proquest3089982en_US
dc.identifier.bibrecord.b44423998en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.