New methods of collection and interpretation in photoelectron spectroscopy: Applications to metallocenes

Persistent Link:
http://hdl.handle.net/10150/279891
Title:
New methods of collection and interpretation in photoelectron spectroscopy: Applications to metallocenes
Author:
Metzker, Julia Katheryn
Issue Date:
2001
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The use of ultraviolet photoelectron spectroscopy (UPS) to probe bonding and electronic structure in organometallic molecules is explored by development of new techniques for obtaining and interpreting valence ionizations in photoelectron spectra. Methods used in this work include understanding molecular functional group cross sections, determining communication between groups separated by alkane chains and the development of a new method of obtaining high quality UPS of surface-bound species. Our understanding of orbital mixing and the behavior of atomic orbitals in molecules is probed by investigation of a series of molecules containing functional groups separated by an alkane chain. The communication between functional endgroups is probed by varying the length of the alkane chain separating them. An investigation of these systems by variable photon energy photoelectron spectroscopy is presented and discussed. Molecules containing long (>10) alkane chains are described as models for gas-phase "solvation". Metallocene-terminated alkanethiol monolayers are prepared and analyzed as the first-ever method of obtaining high quality photoelectron spectroscopy organometallics in the condensed phase. The UPS of ferrocene and osmocene terminated monolayers are presented, showing that self-assembled monolayer technology can be successfully adapted to a method of producing UPS spectra of non-volatile molecules. Due to the unique environment of the metallocene, these terminated alkanethiol monolayers also act as an effective system to probe the effects of solvation on electronic structure and electron ionizations.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Chemistry, Analytical.; Chemistry, Inorganic.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Lichtenberger, Dennis L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleNew methods of collection and interpretation in photoelectron spectroscopy: Applications to metallocenesen_US
dc.creatorMetzker, Julia Katherynen_US
dc.contributor.authorMetzker, Julia Katherynen_US
dc.date.issued2001en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe use of ultraviolet photoelectron spectroscopy (UPS) to probe bonding and electronic structure in organometallic molecules is explored by development of new techniques for obtaining and interpreting valence ionizations in photoelectron spectra. Methods used in this work include understanding molecular functional group cross sections, determining communication between groups separated by alkane chains and the development of a new method of obtaining high quality UPS of surface-bound species. Our understanding of orbital mixing and the behavior of atomic orbitals in molecules is probed by investigation of a series of molecules containing functional groups separated by an alkane chain. The communication between functional endgroups is probed by varying the length of the alkane chain separating them. An investigation of these systems by variable photon energy photoelectron spectroscopy is presented and discussed. Molecules containing long (>10) alkane chains are described as models for gas-phase "solvation". Metallocene-terminated alkanethiol monolayers are prepared and analyzed as the first-ever method of obtaining high quality photoelectron spectroscopy organometallics in the condensed phase. The UPS of ferrocene and osmocene terminated monolayers are presented, showing that self-assembled monolayer technology can be successfully adapted to a method of producing UPS spectra of non-volatile molecules. Due to the unique environment of the metallocene, these terminated alkanethiol monolayers also act as an effective system to probe the effects of solvation on electronic structure and electron ionizations.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectChemistry, Analytical.en_US
dc.subjectChemistry, Inorganic.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorLichtenberger, Dennis L.en_US
dc.identifier.proquest3031410en_US
dc.identifier.bibrecord.b4228921xen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.