Nondestructive evaluation of bar-concrete interface in reinforced concrete structures

Persistent Link:
http://hdl.handle.net/10150/279890
Title:
Nondestructive evaluation of bar-concrete interface in reinforced concrete structures
Author:
Na, Won-Bae
Issue Date:
2001
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The feasibility of detecting and quantifying delamination at the interface between steel (or GFRP) bar and concrete using ultrasonic guided waves is investigated in this study. These waves can propagate a long distance along the reinforcing steel (or GFRP) bar or concrete beam as guided waves and are sensitive to the interface bonding condition between the steel (or GFRP) bar and concrete. The traditional ultrasonic methods are good for detecting large voids in concrete but not very efficient for detecting delamination at the interface between concrete and steel (GFRP) bar since they use reflection, transmission and scattering of longitudinal waves by internal defects. In this study, special solid couplers between the steel/GFRP bar (or concrete beam) and ultrasonic transducers have been used to launch cylindrical guided waves (or Lamb waves) in the steel/GFRP bar (or concrete). This investigation shows that the guided wave inspection technique is an efficient and effective tool for health monitoring of concrete structures.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Applied Mechanics.; Engineering, Civil.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Civil Engineering and Engineering Mechanics
Degree Grantor:
University of Arizona
Advisor:
Kundu, Tribikram; Ehsani, Mohammad R.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleNondestructive evaluation of bar-concrete interface in reinforced concrete structuresen_US
dc.creatorNa, Won-Baeen_US
dc.contributor.authorNa, Won-Baeen_US
dc.date.issued2001en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe feasibility of detecting and quantifying delamination at the interface between steel (or GFRP) bar and concrete using ultrasonic guided waves is investigated in this study. These waves can propagate a long distance along the reinforcing steel (or GFRP) bar or concrete beam as guided waves and are sensitive to the interface bonding condition between the steel (or GFRP) bar and concrete. The traditional ultrasonic methods are good for detecting large voids in concrete but not very efficient for detecting delamination at the interface between concrete and steel (GFRP) bar since they use reflection, transmission and scattering of longitudinal waves by internal defects. In this study, special solid couplers between the steel/GFRP bar (or concrete beam) and ultrasonic transducers have been used to launch cylindrical guided waves (or Lamb waves) in the steel/GFRP bar (or concrete). This investigation shows that the guided wave inspection technique is an efficient and effective tool for health monitoring of concrete structures.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectApplied Mechanics.en_US
dc.subjectEngineering, Civil.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineCivil Engineering and Engineering Mechanicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorKundu, Tribikramen_US
dc.contributor.advisorEhsani, Mohammad R.en_US
dc.identifier.proquest3031408en_US
dc.identifier.bibrecord.b42288812en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.