Persistent Link:
http://hdl.handle.net/10150/279802
Title:
Dynamics of travelling helicity fronts in bacterial flagella
Author:
Coombs, Daniel
Issue Date:
2001
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Twenty years ago the experiments of Hotani revealed that flagellar polymorphism (the ability of bacterial flagellar filaments to take on different quaternary structures, specifically helices of different handedness and pitch) can be generated by fluid stresses of the same magnitude as those that occur during natural swimming. Experimental work including the recent crystallization of flagellin, as well as theoretical studies, show how the packing properties and underlying bistability of flagellin may give rise to different static structures. Hotani's experiments showed dynamic nucleation and propagation of domains of opposing handedness on a single flagellum. Here we present the first theory to explain this phenomenon, which is of great relevance to the study of the bundling-unbundling transition in run-and-tumble behaviour of free-swimming bacteria. Our model, based entirely on measurable, physical properties of flagella, bridges the gap between protein-scale statics and cell-scale dynamics. We generate simulations of flagellar motion under fluid stress that exhibit nucleation rates and transition speeds in quantitative agreement with experiment.
Type:
text; Dissertation-Reproduction (electronic)
Keywords:
Mathematics.; Biophysics, General.
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Applied Mathematics
Degree Grantor:
University of Arizona
Advisor:
Goldstein, Raymond E.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleDynamics of travelling helicity fronts in bacterial flagellaen_US
dc.creatorCoombs, Danielen_US
dc.contributor.authorCoombs, Danielen_US
dc.date.issued2001en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractTwenty years ago the experiments of Hotani revealed that flagellar polymorphism (the ability of bacterial flagellar filaments to take on different quaternary structures, specifically helices of different handedness and pitch) can be generated by fluid stresses of the same magnitude as those that occur during natural swimming. Experimental work including the recent crystallization of flagellin, as well as theoretical studies, show how the packing properties and underlying bistability of flagellin may give rise to different static structures. Hotani's experiments showed dynamic nucleation and propagation of domains of opposing handedness on a single flagellum. Here we present the first theory to explain this phenomenon, which is of great relevance to the study of the bundling-unbundling transition in run-and-tumble behaviour of free-swimming bacteria. Our model, based entirely on measurable, physical properties of flagella, bridges the gap between protein-scale statics and cell-scale dynamics. We generate simulations of flagellar motion under fluid stress that exhibit nucleation rates and transition speeds in quantitative agreement with experiment.en_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
dc.subjectMathematics.en_US
dc.subjectBiophysics, General.en_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGoldstein, Raymond E.en_US
dc.identifier.proquest3023486en_US
dc.identifier.bibrecord.b4195743xen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.