Finite difference time domain analysis of photonic band gap structures in one and two dimensions

Persistent Link:
http://hdl.handle.net/10150/278606
Title:
Finite difference time domain analysis of photonic band gap structures in one and two dimensions
Author:
Franson, Steven James, 1974-
Issue Date:
1997
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Dielectric and magnetic structures which inhibit the propagation of light for a given frequency range at any angle of incidence are said to have a photonic band gap (PBG). By placing defects inside of these PBG structures, useful devices can be constructed including micro-cavity lasers and nanometer scale waveguides. This thesis is concerned with the evaluation of these PBGs in order to obtain an understanding of how they work, as well as developing new methods to evaluate them. The photonic band gap configurations are modeled with the Finite Difference Time Domain (FDTD) method in one and two dimensions. By modeling these structures in the time domain, the finite amount of time that it takes to establish the photonic band gaps may be observed. Also, methods using the Fast Fourier Transform in combination with the FDTD algorithm are capable of determining the frequency spectrum of a structure with little computation time.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Engineering, Electronics and Electrical.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Electrical and Computer Engineering
Degree Grantor:
University of Arizona
Advisor:
Ziolkowski, Richard W.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleFinite difference time domain analysis of photonic band gap structures in one and two dimensionsen_US
dc.creatorFranson, Steven James, 1974-en_US
dc.contributor.authorFranson, Steven James, 1974-en_US
dc.date.issued1997en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractDielectric and magnetic structures which inhibit the propagation of light for a given frequency range at any angle of incidence are said to have a photonic band gap (PBG). By placing defects inside of these PBG structures, useful devices can be constructed including micro-cavity lasers and nanometer scale waveguides. This thesis is concerned with the evaluation of these PBGs in order to obtain an understanding of how they work, as well as developing new methods to evaluate them. The photonic band gap configurations are modeled with the Finite Difference Time Domain (FDTD) method in one and two dimensions. By modeling these structures in the time domain, the finite amount of time that it takes to establish the photonic band gaps may be observed. Also, methods using the Fast Fourier Transform in combination with the FDTD algorithm are capable of determining the frequency spectrum of a structure with little computation time.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectEngineering, Electronics and Electrical.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorZiolkowski, Richard W.en_US
dc.identifier.proquest1385745en_US
dc.identifier.bibrecord.b37467918en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.