Bit error rate computations for both noise and intersymbol interference considerations in optical communications

Persistent Link:
http://hdl.handle.net/10150/278277
Title:
Bit error rate computations for both noise and intersymbol interference considerations in optical communications
Author:
Vrahas, Antonios Costa, 1967-
Issue Date:
1993
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Bit error rate computation for optical communication systems incorporating equalizers and under both noise and intersymbol interference (ISI) is discussed. An accurate method based on a saddlepoint approximation is used for the computation. Previous work based on saddlepoint approximation has considered only the use of basic integration-and-dump detection. When ISI is strong, this simple detection method is unsatisfactory. Instead, a raised-cosine filtering is often used to achieve minimal ISI. This thesis considers both integration-and-dump and raised-cosine equalizers. The use of equalizers other than integration-and-dump complicates the computation because of the complexity of the moment generating function involved. Two different input pulses are considered to study the effect of ISI. Results show that when intersymbol interference is strong, the use of raised-cosine equalizers can reduce intersymbol interference and improve the performance of the system significantly.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Engineering, Electronics and Electrical.; Physics, Electricity and Magnetism.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College
Degree Grantor:
University of Arizona
Advisor:
Liu, Ming-Kang

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleBit error rate computations for both noise and intersymbol interference considerations in optical communicationsen_US
dc.creatorVrahas, Antonios Costa, 1967-en_US
dc.contributor.authorVrahas, Antonios Costa, 1967-en_US
dc.date.issued1993en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractBit error rate computation for optical communication systems incorporating equalizers and under both noise and intersymbol interference (ISI) is discussed. An accurate method based on a saddlepoint approximation is used for the computation. Previous work based on saddlepoint approximation has considered only the use of basic integration-and-dump detection. When ISI is strong, this simple detection method is unsatisfactory. Instead, a raised-cosine filtering is often used to achieve minimal ISI. This thesis considers both integration-and-dump and raised-cosine equalizers. The use of equalizers other than integration-and-dump complicates the computation because of the complexity of the moment generating function involved. Two different input pulses are considered to study the effect of ISI. Results show that when intersymbol interference is strong, the use of raised-cosine equalizers can reduce intersymbol interference and improve the performance of the system significantly.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectEngineering, Electronics and Electrical.en_US
dc.subjectPhysics, Electricity and Magnetism.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorLiu, Ming-Kangen_US
dc.identifier.proquest1352318en_US
dc.identifier.bibrecord.b27029906en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.