A multi-step steady-state inverse method for the determination of unsaturated hydraulic conductivity in soil columns: A new parameter estimation technique

Persistent Link:
http://hdl.handle.net/10150/278254
Title:
A multi-step steady-state inverse method for the determination of unsaturated hydraulic conductivity in soil columns: A new parameter estimation technique
Author:
Muller, Curtis Joseph, 1959-
Issue Date:
1992
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A problem common to many studies involving the use of unsaturated flow and chemical models is determining a representative expression for the value of unsaturated hydraulic conductivity K(ψ). A new steady-state inverse methodology called the multi-step steady-state outflow method (MSSOM) is presented here for the determination of unsaturated hydraulic conductivity. The method offers a practical alternative for the estimation of K(ψ) using either the exponential model, three-parameter model, or the van Genuchten formulations for K(ψ), a global-optimization simplex routine (MSSOM.EXE), and simple outflow data from a one-dimensional column experiment. The inverse technique was applied to a coarse sand and both the wetting an drying curves were well within the range of K(ψ) expected. Conductivity data from four other soils in the literature were then fitted using a curve fitting routine (RETC.F77) by van Genuchten, 1985 and compared to the inverse solution from the MSSOM model. The parameters for the K(ψ) expressions from both RETC and the MSSOM inverse model agreed well. Additional refinement of the multi-step steady-state outflow laboratory apparatus and the optimization program MSSOM.EXE are needed however to further improve the method.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Hydrology.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College
Degree Grantor:
University of Arizona
Advisor:
Yeh, T.-C. Jim

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleA multi-step steady-state inverse method for the determination of unsaturated hydraulic conductivity in soil columns: A new parameter estimation techniqueen_US
dc.creatorMuller, Curtis Joseph, 1959-en_US
dc.contributor.authorMuller, Curtis Joseph, 1959-en_US
dc.date.issued1992en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA problem common to many studies involving the use of unsaturated flow and chemical models is determining a representative expression for the value of unsaturated hydraulic conductivity K(ψ). A new steady-state inverse methodology called the multi-step steady-state outflow method (MSSOM) is presented here for the determination of unsaturated hydraulic conductivity. The method offers a practical alternative for the estimation of K(ψ) using either the exponential model, three-parameter model, or the van Genuchten formulations for K(ψ), a global-optimization simplex routine (MSSOM.EXE), and simple outflow data from a one-dimensional column experiment. The inverse technique was applied to a coarse sand and both the wetting an drying curves were well within the range of K(ψ) expected. Conductivity data from four other soils in the literature were then fitted using a curve fitting routine (RETC.F77) by van Genuchten, 1985 and compared to the inverse solution from the MSSOM model. The parameters for the K(ψ) expressions from both RETC and the MSSOM inverse model agreed well. Additional refinement of the multi-step steady-state outflow laboratory apparatus and the optimization program MSSOM.EXE are needed however to further improve the method.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectHydrology.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorYeh, T.-C. Jimen_US
dc.identifier.proquest1351341en_US
dc.identifier.bibrecord.b26868209en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.