Photoelectron spectroscopy of dimolybdenum tetracarboxylates: Probing the electronic nature of the molybdenum-molybdenum quadruple bond

Persistent Link:
http://hdl.handle.net/10150/278093
Title:
Photoelectron spectroscopy of dimolybdenum tetracarboxylates: Probing the electronic nature of the molybdenum-molybdenum quadruple bond
Author:
Ray, Charles David, 1967-
Issue Date:
1992
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Photoelectron spectroscopy is used to investigate the electronic structure of molybdenum-molybdenum quadruple bonds in dimolybdenum tetracarboxylates. The variable energy photoelectron spectra of the valence region of dimolybdenum tetraacetate are reported for a range of incident photon energies. The pi components of the metal-metal bond contain the most molybdenum 4d character. The sigma component has contribution from both the ligand and the molybdenum 4p orbitals on the adjoining molybdenum. The delta component has significant overlap with the ligand orbitals. A comparative gas phase and surface ultraviolet photoelectron study of dimolybdenum tetrabenzoate is also reported. This is the first dimolybdenum tetracarboxylate where the ligand is capable of large resonance overlap with the metal center. There is significant orbital overlap between the ligand and the metal-metal bond, especially with the delta component. Both of these studies show that there is electronic communication between the metal-metal bond and the carboxylate ligand.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Chemistry, Inorganic.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College
Degree Grantor:
University of Arizona
Advisor:
Lichtenberger, Dennis L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titlePhotoelectron spectroscopy of dimolybdenum tetracarboxylates: Probing the electronic nature of the molybdenum-molybdenum quadruple bonden_US
dc.creatorRay, Charles David, 1967-en_US
dc.contributor.authorRay, Charles David, 1967-en_US
dc.date.issued1992en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractPhotoelectron spectroscopy is used to investigate the electronic structure of molybdenum-molybdenum quadruple bonds in dimolybdenum tetracarboxylates. The variable energy photoelectron spectra of the valence region of dimolybdenum tetraacetate are reported for a range of incident photon energies. The pi components of the metal-metal bond contain the most molybdenum 4d character. The sigma component has contribution from both the ligand and the molybdenum 4p orbitals on the adjoining molybdenum. The delta component has significant overlap with the ligand orbitals. A comparative gas phase and surface ultraviolet photoelectron study of dimolybdenum tetrabenzoate is also reported. This is the first dimolybdenum tetracarboxylate where the ligand is capable of large resonance overlap with the metal center. There is significant orbital overlap between the ligand and the metal-metal bond, especially with the delta component. Both of these studies show that there is electronic communication between the metal-metal bond and the carboxylate ligand.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectChemistry, Inorganic.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorLichtenberger, Dennis L.en_US
dc.identifier.proquest1348448en_US
dc.identifier.bibrecord.b27566584en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.