Analysis of data from tracer injection experiments at Stanton Artificial Recharge Facility, Stanton, Texas

Persistent Link:
http://hdl.handle.net/10150/278024
Title:
Analysis of data from tracer injection experiments at Stanton Artificial Recharge Facility, Stanton, Texas
Author:
Broermann, James, 1962-
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Concentration breakthrough data collected by the USGS at Stanton, Texas during tracer injection tests of the Ogallala aquifer are simulated using an approximate and an exact analytical solution of conservative solute transport in a radial flow field from an injection well. Data were collected at selected depths in the aquifer and at fully screened observation wells. The concentration breakthrough data were simulated with the analytical solutions by finding the values of hydraulic conductivity and dispersivity which provided the best fit of the data. The exact analytical solution is the appropriate solution for analyzing data collected at the Stanton site. Both dispersivity and hydraulic conductivity vary greatly at the site. Bromide is considered to be conservative. Boron distribution coefficients are determined by using hydraulic conductivities estimated by simulation of boron and bromide breakthrough curves. Additional tracers used in the experiments at the Stanton site include aniline, phenolphthalein and benzoate.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Hydrology.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College
Degree Grantor:
University of Arizona
Advisor:
Bassett, Randy L.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleAnalysis of data from tracer injection experiments at Stanton Artificial Recharge Facility, Stanton, Texasen_US
dc.creatorBroermann, James, 1962-en_US
dc.contributor.authorBroermann, James, 1962-en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractConcentration breakthrough data collected by the USGS at Stanton, Texas during tracer injection tests of the Ogallala aquifer are simulated using an approximate and an exact analytical solution of conservative solute transport in a radial flow field from an injection well. Data were collected at selected depths in the aquifer and at fully screened observation wells. The concentration breakthrough data were simulated with the analytical solutions by finding the values of hydraulic conductivity and dispersivity which provided the best fit of the data. The exact analytical solution is the appropriate solution for analyzing data collected at the Stanton site. Both dispersivity and hydraulic conductivity vary greatly at the site. Bromide is considered to be conservative. Boron distribution coefficients are determined by using hydraulic conductivities estimated by simulation of boron and bromide breakthrough curves. Additional tracers used in the experiments at the Stanton site include aniline, phenolphthalein and benzoate.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectHydrology.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBassett, Randy L.en_US
dc.identifier.proquest1346685en_US
dc.identifier.bibrecord.b27251676en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.