Particle contamination in sulfur-hexafluoride/argon plasma etching process

Persistent Link:
http://hdl.handle.net/10150/277919
Title:
Particle contamination in sulfur-hexafluoride/argon plasma etching process
Author:
Kong, Yung, 1967-
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Process generated particle contamination on unpatterned silicon wafers etched in an SF6/argon plasma using a Tegal MCR-1 etcher in the plasma triode-1 mode was characterized using response surface methodology. Particle deposition was observed to be a predictable function of plasma parameter space, which can be determined by relatively few statistically designed experiments. A model of particle deposition as a function of 13.56 MHz chamber electrode rf power, chamber pressure, gas flow rate, etch time and 100 kHz wafer electrode power was constructed. It is found that particle deposition depends linearly on etch time and both 13.56 MHz and 100 kHz power. In addition, particle deposition increased with gas flow rate at low flow rate, reaches a maximum, then decreased as flow rate increased further. Moreover, there was no observable effect on particle deposition due to pressure variation in the pressure range explored. Auger chemical analysis showed that the particles contained elemental sulfur, fluorine, silicon, aluminum, carbon and oxygen. Most particles were typically less than 2 μm in diameter.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Engineering, Electronics and Electrical.; Physics, Electricity and Magnetism.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College
Degree Grantor:
University of Arizona
Advisor:
Carlile, Robert N.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleParticle contamination in sulfur-hexafluoride/argon plasma etching processen_US
dc.creatorKong, Yung, 1967-en_US
dc.contributor.authorKong, Yung, 1967-en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractProcess generated particle contamination on unpatterned silicon wafers etched in an SF6/argon plasma using a Tegal MCR-1 etcher in the plasma triode-1 mode was characterized using response surface methodology. Particle deposition was observed to be a predictable function of plasma parameter space, which can be determined by relatively few statistically designed experiments. A model of particle deposition as a function of 13.56 MHz chamber electrode rf power, chamber pressure, gas flow rate, etch time and 100 kHz wafer electrode power was constructed. It is found that particle deposition depends linearly on etch time and both 13.56 MHz and 100 kHz power. In addition, particle deposition increased with gas flow rate at low flow rate, reaches a maximum, then decreased as flow rate increased further. Moreover, there was no observable effect on particle deposition due to pressure variation in the pressure range explored. Auger chemical analysis showed that the particles contained elemental sulfur, fluorine, silicon, aluminum, carbon and oxygen. Most particles were typically less than 2 μm in diameter.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectEngineering, Electronics and Electrical.en_US
dc.subjectPhysics, Electricity and Magnetism.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCarlile, Robert N.en_US
dc.identifier.proquest1345373en_US
dc.identifier.bibrecord.b27003218en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.