Laser spectroscopy of calcium monohydroxide and calcium monodeuteroxide

Persistent Link:
http://hdl.handle.net/10150/277856
Title:
Laser spectroscopy of calcium monohydroxide and calcium monodeuteroxide
Author:
Hailey, Rebecca Anne, 1965-
Issue Date:
1991
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
CaOH and CaOD were studied in the gas phase using dye laser spectroscopy. The molecules were produced in a Broida-type oven. Laser excitation spectroscopy was used to study the Ḃ²Σ⁺-X²Σ⁺ transition of CaOD near 5500 Å. The 000-000 band was rotationally analyzed and r₀ structures were established for both states. Like other alkaline earth monohydroxides, CaOD is a linear molecule. For the Ḃ²Σ⁺ state the following bond lengths were found: r(Ca-O) = 1.9697Å and r(O-H) = 0.9179Å, while for the X²Σ⁺ state, r(Ca-O) = 1.9849 and r(O-H) = 0.9207Å. Optical-optical double resonance (OODR) was used to investigate the upper electronic states of CaOH. A ²Π electronic state and three ²Σ vibronic states were observed for the first time in the region 2990 - 3070 Å. For the ²Π state the rotational constant, B°, and the band origin energy, T₀, were calculated: B° = 0.347 cm⁻¹ and T = 32360 cm⁻¹.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Chemistry, Physical.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College
Degree Grantor:
University of Arizona
Advisor:
Bernath, Peter F.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleLaser spectroscopy of calcium monohydroxide and calcium monodeuteroxideen_US
dc.creatorHailey, Rebecca Anne, 1965-en_US
dc.contributor.authorHailey, Rebecca Anne, 1965-en_US
dc.date.issued1991en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractCaOH and CaOD were studied in the gas phase using dye laser spectroscopy. The molecules were produced in a Broida-type oven. Laser excitation spectroscopy was used to study the Ḃ²Σ⁺-X²Σ⁺ transition of CaOD near 5500 Å. The 000-000 band was rotationally analyzed and r₀ structures were established for both states. Like other alkaline earth monohydroxides, CaOD is a linear molecule. For the Ḃ²Σ⁺ state the following bond lengths were found: r(Ca-O) = 1.9697Å and r(O-H) = 0.9179Å, while for the X²Σ⁺ state, r(Ca-O) = 1.9849 and r(O-H) = 0.9207Å. Optical-optical double resonance (OODR) was used to investigate the upper electronic states of CaOH. A ²Π electronic state and three ²Σ vibronic states were observed for the first time in the region 2990 - 3070 Å. For the ²Π state the rotational constant, B°, and the band origin energy, T₀, were calculated: B° = 0.347 cm⁻¹ and T = 32360 cm⁻¹.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectChemistry, Physical.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBernath, Peter F.en_US
dc.identifier.proquest1343693en_US
dc.identifier.bibrecord.b26843894en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.