The effects of ionizing radiation on the breakdown voltage of p-channel power MOSFETs

Persistent Link:
http://hdl.handle.net/10150/277798
Title:
The effects of ionizing radiation on the breakdown voltage of p-channel power MOSFETs
Author:
Kosier, Steven Louie, 1966-
Issue Date:
1990
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The effects of ionizing radiation on the breakdown voltage of p-channel power MOSFETs were examined through two-dimensional simulation. The response of a reverse-biased n+-p junction to positive oxide-trapped charge, Not, is examined in detail, and analytical expressions for its characteristics are derived. These results provide insight into the breakdown performance of p-channel power MOSFETs in ionizing radiation environments, whose performance was found to be very different from corresponding n-channel power MOSFETs. Insights gained through analysis of p-channel devices suggest a termination/isolation scheme, the VLD-FRR, that will enhance p-channel device reliability in radiation environments. Two introductory chapters, which also serve as literature reviews, are provided. The buildup of Not in thick oxides and breakdown voltage of the power DMOS transistor are both reviewed, with attention focused on p-channel devices in both cases. Finally, suggestions for future work are given.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Engineering, Electronics and Electrical.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College
Degree Grantor:
University of Arizona
Advisor:
Schrimpf, R. D.; Cellier, F. E.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleThe effects of ionizing radiation on the breakdown voltage of p-channel power MOSFETsen_US
dc.creatorKosier, Steven Louie, 1966-en_US
dc.contributor.authorKosier, Steven Louie, 1966-en_US
dc.date.issued1990en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe effects of ionizing radiation on the breakdown voltage of p-channel power MOSFETs were examined through two-dimensional simulation. The response of a reverse-biased n+-p junction to positive oxide-trapped charge, Not, is examined in detail, and analytical expressions for its characteristics are derived. These results provide insight into the breakdown performance of p-channel power MOSFETs in ionizing radiation environments, whose performance was found to be very different from corresponding n-channel power MOSFETs. Insights gained through analysis of p-channel devices suggest a termination/isolation scheme, the VLD-FRR, that will enhance p-channel device reliability in radiation environments. Two introductory chapters, which also serve as literature reviews, are provided. The buildup of Not in thick oxides and breakdown voltage of the power DMOS transistor are both reviewed, with attention focused on p-channel devices in both cases. Finally, suggestions for future work are given.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectEngineering, Electronics and Electrical.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSchrimpf, R. D.en_US
dc.contributor.advisorCellier, F. E.en_US
dc.identifier.proquest1342975en_US
dc.identifier.bibrecord.b26622567en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.