Persistent Link:
http://hdl.handle.net/10150/276978
Title:
Vortex interactions in an axisymmetric water jet
Author:
Clough, Ray Charles, 1950-
Issue Date:
1989
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
An axially symmetric water jet was designed and constructed to complement an existing air jet facility. The water jet operates at Reynolds numbers, based on nozzle diameter, up to 50,000. The jet is forced at high levels by a reciprocating Scotch yoke mechanism. By using an output signal from the Scotch yoke as a phase reference, it is possible to obtain either phase-locked hot film data or phase-locked photographs of the dye-marked coherent vortical structures in the shear layer. By assuming zero azimuthal velocity, continuity allows reconstruction of the vorticity field from the data obtained traversing the jet using a single straight hot film probe. Thus the phase-locked photographs and the phase-locked data sets can be compared. The close agreement of the reconstructed vorticity with the photographs gives credence to the assumption of zero azimuthal velocity, and shows that the dye injection method of flow visualization accurately represents the vortical structure of this flow.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Water jets -- Design and construction.; Vortex-motion.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Aerospace and Mechanical Engineering
Degree Grantor:
University of Arizona
Advisor:
Petersen, Robert A.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleVortex interactions in an axisymmetric water jeten_US
dc.creatorClough, Ray Charles, 1950-en_US
dc.contributor.authorClough, Ray Charles, 1950-en_US
dc.date.issued1989en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAn axially symmetric water jet was designed and constructed to complement an existing air jet facility. The water jet operates at Reynolds numbers, based on nozzle diameter, up to 50,000. The jet is forced at high levels by a reciprocating Scotch yoke mechanism. By using an output signal from the Scotch yoke as a phase reference, it is possible to obtain either phase-locked hot film data or phase-locked photographs of the dye-marked coherent vortical structures in the shear layer. By assuming zero azimuthal velocity, continuity allows reconstruction of the vorticity field from the data obtained traversing the jet using a single straight hot film probe. Thus the phase-locked photographs and the phase-locked data sets can be compared. The close agreement of the reconstructed vorticity with the photographs gives credence to the assumption of zero azimuthal velocity, and shows that the dye injection method of flow visualization accurately represents the vortical structure of this flow.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectWater jets -- Design and construction.en_US
dc.subjectVortex-motion.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineAerospace and Mechanical Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPetersen, Robert A.en_US
dc.identifier.proquest1336674en_US
dc.identifier.oclc22647390en_US
dc.identifier.bibrecord.b17473196en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.