Persistent Link:
http://hdl.handle.net/10150/276944
Title:
Interferometric aspheric surface testing using ray tracing code
Author:
Kurita, Hiroyuki, 1958-
Issue Date:
1989
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Phase shifting interferometry is one of the most promising methods for testing aspheres. However, one will encounter the following problems when it is applied to test an asphere: (1) very tight fringes produced by a strong asphere exceed the test system's resolution, (2) a test wavefront suffers from system aberrations of the interferometer that cause measurement errors, and (3) the wavefront immediately after reflection does not necessarily represent the shape of the test asphere. This thesis used a high density array sensor to detect the dense fringes. In order to solve the system aberration and the ray retrace problems, it is necessary to incorporate a ray trace code and phase shifting interferometry. This measurement principle was applied for an aspheric surface whose asphericity was 100 waves. A phase shifting Fizeau interferometer was incorporated with an optical design program. The attained accuracy was approximately one-tenth of a wave.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Aspherical lenses -- Testing.; Optoelectronics -- Testing.; Interferometers.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Wyant, James C.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleInterferometric aspheric surface testing using ray tracing codeen_US
dc.creatorKurita, Hiroyuki, 1958-en_US
dc.contributor.authorKurita, Hiroyuki, 1958-en_US
dc.date.issued1989en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractPhase shifting interferometry is one of the most promising methods for testing aspheres. However, one will encounter the following problems when it is applied to test an asphere: (1) very tight fringes produced by a strong asphere exceed the test system's resolution, (2) a test wavefront suffers from system aberrations of the interferometer that cause measurement errors, and (3) the wavefront immediately after reflection does not necessarily represent the shape of the test asphere. This thesis used a high density array sensor to detect the dense fringes. In order to solve the system aberration and the ray retrace problems, it is necessary to incorporate a ray trace code and phase shifting interferometry. This measurement principle was applied for an aspheric surface whose asphericity was 100 waves. A phase shifting Fizeau interferometer was incorporated with an optical design program. The attained accuracy was approximately one-tenth of a wave.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectAspherical lenses -- Testing.en_US
dc.subjectOptoelectronics -- Testing.en_US
dc.subjectInterferometers.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWyant, James C.en_US
dc.identifier.proquest1336346en_US
dc.identifier.oclc22461856en_US
dc.identifier.bibrecord.b17435699en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.