The proteolytic activity of hsp70 from human and Drosophila melanogaster

Persistent Link:
http://hdl.handle.net/10150/276920
Title:
The proteolytic activity of hsp70 from human and Drosophila melanogaster
Author:
Rabinowitz, Joseph Elias, 1962-
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A proteolytic activity has been shown to be associated with the heat shock protein 70 (hsp70). In order to study this, I have constructed RNA transcribing vectors with the coding sequences of the D. melanogaster (pBUG7) and the human (pMAN70) genes coding hsp70, and with an internal deletion (pBUG301) in D. melanogaster. Proteins from 37 kDa to 70 kDa were translated in a rabbit reticulocyte lysate in the presence of 35S-methionine from RNA synthesized in vitro off the full length templates (pBUG7, and pMAN70), or altered templates. Restriction digestion of pBUG7 with BamH I and Nar I yields templates that produce carboxy-terminal truncated proteins of 37 kDa and 61 kDa respectively. The full length and the truncated proteins contain a proteolytic activity when assayed by SDS/PAGE in two dimensions. The internally deleted protein does not maintain the proteolytic activity. The proteolytic activity was shown not to be the result of non-enzymatic cleavage. A general serine proteinase inhibitor eliminates the proteolytic activity of the full length human and D. melanogaster hsp70. This evidence shows that the proteolytic activity is directly connected to hsp70.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Heat shock proteins.; Proteolytic enzyme genes.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Microbiology and Immunology
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleThe proteolytic activity of hsp70 from human and Drosophila melanogasteren_US
dc.creatorRabinowitz, Joseph Elias, 1962-en_US
dc.contributor.authorRabinowitz, Joseph Elias, 1962-en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA proteolytic activity has been shown to be associated with the heat shock protein 70 (hsp70). In order to study this, I have constructed RNA transcribing vectors with the coding sequences of the D. melanogaster (pBUG7) and the human (pMAN70) genes coding hsp70, and with an internal deletion (pBUG301) in D. melanogaster. Proteins from 37 kDa to 70 kDa were translated in a rabbit reticulocyte lysate in the presence of 35S-methionine from RNA synthesized in vitro off the full length templates (pBUG7, and pMAN70), or altered templates. Restriction digestion of pBUG7 with BamH I and Nar I yields templates that produce carboxy-terminal truncated proteins of 37 kDa and 61 kDa respectively. The full length and the truncated proteins contain a proteolytic activity when assayed by SDS/PAGE in two dimensions. The internally deleted protein does not maintain the proteolytic activity. The proteolytic activity was shown not to be the result of non-enzymatic cleavage. A general serine proteinase inhibitor eliminates the proteolytic activity of the full length human and D. melanogaster hsp70. This evidence shows that the proteolytic activity is directly connected to hsp70.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectHeat shock proteins.en_US
dc.subjectProteolytic enzyme genes.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMicrobiology and Immunologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest1335843en_US
dc.identifier.oclc22572492en_US
dc.identifier.bibrecord.b17456770en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.