Laser spectroscopy of strontium-sulfide and alkaline earth monoborohydrides

Persistent Link:
http://hdl.handle.net/10150/276739
Title:
Laser spectroscopy of strontium-sulfide and alkaline earth monoborohydrides
Author:
Pianalto, Frederick Scott, 1961-
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Three gas phase alkaline earth molecules were analyzed using dye laser spectroscopy. The A¹Σ⁺ - X¹Σ⁺ transition of gas phase SrS was studied with high resolution techniques. The 0-0, 0-1, 1-1, 2-1, 3-0, 3-2, 4-1, 5-1, and 5-2 bands were rotationally analyzed and spectroscopic constants were determined. The A¹Σ⁺ state was extensively perturbed. Ground state (X¹Σ⁺) constants derived from the analysis of the nine vibrational levels include: ωₑ = 388.2643 cm⁻¹, Bₑ = 0.1208034(33) cm⁻¹, and rₑ = 2.439687(14) Å. Excited state (A¹Σ⁺) constants determined include: Tₑ = 13932.7068(10) cm⁻¹, ωₑ = 339.1454(20) cm⁻¹, Bₑ = 0.1139895(38) cm⁻¹, and rₑ = 2.511601(17) Å. The spectra of calcium and strontium borohydrides were observed using low resolution laser spectroscopy. The spectra were assigned to the òA₁ - Ẋ²A₁ and Ḃ²E - Ẋ²A₁ transitions of CaBH₄ and SrBH₄. The vibrational frequencies of the metal-ligand stretch determined for CaBH₄ were 457 cm⁻¹ (Ẋ²A₁), 473 cm⁻¹ (Ā²A₁), and 465 cm⁻¹ (Ḃ²E). The corresponding SrBH4 frequencies were 399 cm⁻¹, 420 cm⁻¹, and 421 cm⁻¹.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Strontium compounds -- Spectra.; Hydrides -- Spectra.; Gases -- Spectra.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Bernath, Peter F.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleLaser spectroscopy of strontium-sulfide and alkaline earth monoborohydridesen_US
dc.creatorPianalto, Frederick Scott, 1961-en_US
dc.contributor.authorPianalto, Frederick Scott, 1961-en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThree gas phase alkaline earth molecules were analyzed using dye laser spectroscopy. The A¹Σ⁺ - X¹Σ⁺ transition of gas phase SrS was studied with high resolution techniques. The 0-0, 0-1, 1-1, 2-1, 3-0, 3-2, 4-1, 5-1, and 5-2 bands were rotationally analyzed and spectroscopic constants were determined. The A¹Σ⁺ state was extensively perturbed. Ground state (X¹Σ⁺) constants derived from the analysis of the nine vibrational levels include: ωₑ = 388.2643 cm⁻¹, Bₑ = 0.1208034(33) cm⁻¹, and rₑ = 2.439687(14) Å. Excited state (A¹Σ⁺) constants determined include: Tₑ = 13932.7068(10) cm⁻¹, ωₑ = 339.1454(20) cm⁻¹, Bₑ = 0.1139895(38) cm⁻¹, and rₑ = 2.511601(17) Å. The spectra of calcium and strontium borohydrides were observed using low resolution laser spectroscopy. The spectra were assigned to the òA₁ - Ẋ²A₁ and Ḃ²E - Ẋ²A₁ transitions of CaBH₄ and SrBH₄. The vibrational frequencies of the metal-ligand stretch determined for CaBH₄ were 457 cm⁻¹ (Ẋ²A₁), 473 cm⁻¹ (Ā²A₁), and 465 cm⁻¹ (Ḃ²E). The corresponding SrBH4 frequencies were 399 cm⁻¹, 420 cm⁻¹, and 421 cm⁻¹.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectStrontium compounds -- Spectra.en_US
dc.subjectHydrides -- Spectra.en_US
dc.subjectGases -- Spectra.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBernath, Peter F.en_US
dc.identifier.proquest1333612en_US
dc.identifier.oclc21105889en_US
dc.identifier.bibrecord.b17161423en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.