Systemic indicators of inorganic arsenic toxicity in several species

Persistent Link:
http://hdl.handle.net/10150/276678
Title:
Systemic indicators of inorganic arsenic toxicity in several species
Author:
Mitchell, Roger Dale, 1955-
Issue Date:
1988
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Seven prospective biological indicators of systemic toxicity were examined at time points ranging from 15 minutes to 24 hours using male Sprague-Dawley rats, B6C3F1 mice, Golden-Syrian hamsters and Hartley guinea pigs following intraperitoneal dosing with 0.1 mg/kg and 1.0 mg/kg sodium arsenite. Rats and mice were also dosed with 1.0 mg/kg sodium arsenate. Pyruvate dehydrogenase (PDH) activity was significantly depressed at early time points in mice, hamsters and guinea pigs and at later time points in rats dosed with arsenic (III). Rats and mice dosed with arsenic (V) also exhibited PDH depression at early time points. Uroporphyrin and coproporphyrin excretion was elevated in mice following arsenic (III) dosing. Coproporphyrin excretion was elevated in rats following arsenic (V) dosing. Blood glucose, creatinine, urea nitrogen and creatinine were unchanged by arsenic dosing. Based upon the amount and types of biological responses observed, the mouse appears to be the most sensitive animal model for the further study of arsenic toxicity.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Arsenic compounds -- Toxicology -- Testing.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Pharmacology and Toxicology
Degree Grantor:
University of Arizona
Advisor:
Carter, Dean E.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleSystemic indicators of inorganic arsenic toxicity in several speciesen_US
dc.creatorMitchell, Roger Dale, 1955-en_US
dc.contributor.authorMitchell, Roger Dale, 1955-en_US
dc.date.issued1988en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractSeven prospective biological indicators of systemic toxicity were examined at time points ranging from 15 minutes to 24 hours using male Sprague-Dawley rats, B6C3F1 mice, Golden-Syrian hamsters and Hartley guinea pigs following intraperitoneal dosing with 0.1 mg/kg and 1.0 mg/kg sodium arsenite. Rats and mice were also dosed with 1.0 mg/kg sodium arsenate. Pyruvate dehydrogenase (PDH) activity was significantly depressed at early time points in mice, hamsters and guinea pigs and at later time points in rats dosed with arsenic (III). Rats and mice dosed with arsenic (V) also exhibited PDH depression at early time points. Uroporphyrin and coproporphyrin excretion was elevated in mice following arsenic (III) dosing. Coproporphyrin excretion was elevated in rats following arsenic (V) dosing. Blood glucose, creatinine, urea nitrogen and creatinine were unchanged by arsenic dosing. Based upon the amount and types of biological responses observed, the mouse appears to be the most sensitive animal model for the further study of arsenic toxicity.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectArsenic compounds -- Toxicology -- Testing.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePharmacology and Toxicologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCarter, Dean E.en_US
dc.identifier.proquest1333254en_US
dc.identifier.oclc20450423en_US
dc.identifier.bibrecord.b17007653en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.