Mechanisms of the cytotoxic actions of tumor necrosis factor (TNF) in cultured cancer cells

Persistent Link:
http://hdl.handle.net/10150/276602
Title:
Mechanisms of the cytotoxic actions of tumor necrosis factor (TNF) in cultured cancer cells
Author:
Liddil, James Duncan, 1960-
Issue Date:
1987
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Tumor necrosis factor's (TNF) cytotoxic mechanism of action was examined using cultured cancer cell lines. TNF demonstrated cytolytic and cytostatic effects on L929 fibrosarcoma and MCF-7 adenocarcinoma cells. TNF failed to show any specific effects on RNA, DNA or protein synthesis or ATP content in tumor cells in vitro. It did not cause DNA single strand breaks. Decreased cellular levels of reduced thiols did not predict sensitivity to the cytotoxic effects of TNF. Depletion of cellular glutathione failed to increase the sensitivity of TNF-sensitive or resistant cells. However, various non-specific and specific lysosomotropic agents lead to an inhibition of TNF's cytotoxic action. Differences in enzyme activity, primarily lysosomal, were noted between TNF-sensitive and resistant cells. These changes involved a general halving of lysosomal proteins and enzymes in the TNF-resistant cells. The antitumor activity of TNF does not involve specific inhibition of macromolecular synthesis but may involve alterations in lysosomes.
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Tumor necrosis factor.; Cell-mediated cytotoxicity.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Pharmacology and Toxicology
Degree Grantor:
University of Arizona
Advisor:
Sipes, I. Glenn; Dorr, Robert T.

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleMechanisms of the cytotoxic actions of tumor necrosis factor (TNF) in cultured cancer cellsen_US
dc.creatorLiddil, James Duncan, 1960-en_US
dc.contributor.authorLiddil, James Duncan, 1960-en_US
dc.date.issued1987en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractTumor necrosis factor's (TNF) cytotoxic mechanism of action was examined using cultured cancer cell lines. TNF demonstrated cytolytic and cytostatic effects on L929 fibrosarcoma and MCF-7 adenocarcinoma cells. TNF failed to show any specific effects on RNA, DNA or protein synthesis or ATP content in tumor cells in vitro. It did not cause DNA single strand breaks. Decreased cellular levels of reduced thiols did not predict sensitivity to the cytotoxic effects of TNF. Depletion of cellular glutathione failed to increase the sensitivity of TNF-sensitive or resistant cells. However, various non-specific and specific lysosomotropic agents lead to an inhibition of TNF's cytotoxic action. Differences in enzyme activity, primarily lysosomal, were noted between TNF-sensitive and resistant cells. These changes involved a general halving of lysosomal proteins and enzymes in the TNF-resistant cells. The antitumor activity of TNF does not involve specific inhibition of macromolecular synthesis but may involve alterations in lysosomes.en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectTumor necrosis factor.en_US
dc.subjectCell-mediated cytotoxicity.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePharmacology and Toxicologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSipes, I. Glennen_US
dc.contributor.advisorDorr, Robert T.en_US
dc.identifier.proquest1332467en_US
dc.identifier.oclc19365688en_US
dc.identifier.bibrecord.b1676528xen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.