MULTI-STEP COULOSTATIC IMPULSE GENERATOR AND POTENTIAL MONITORING SYSTEM

Persistent Link:
http://hdl.handle.net/10150/276529
Title:
MULTI-STEP COULOSTATIC IMPULSE GENERATOR AND POTENTIAL MONITORING SYSTEM
Author:
Coenen, Lance Gregory, 1959-
Issue Date:
1987
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A Coulostatic Impulse Generator (CIG) is an electronic device that transfers electrical charge to and from a pair of electrodes inserted in plant tissue. Six discrete charge transfers can be implemented in any desired sequence. The major purpose of the CIG is to determine the electrochemical constituents of the plant apoplast electrolyte. The objective of this thesis is threefold: (1) to design, construct and test the supervisory circuitry of the CIG, (2) to design, construct and test the interface between the NEC portable computer and the CIG, (3) to generate utility software to control each circuit board in the system. To handle the extreme difference in the timing of the charge transfer (microseconds) and the subsequent plant response a three step timing sequence is employed which permits an independent range of sample times and sample numbers. Data acquired is first stored in RAM in the computer within the CIG and then transferred to the external computer. (Abstract shortened with permission of author.)
Type:
text; Thesis-Reproduction (electronic)
Keywords:
Electrochemical sensors -- Design and construction.; Plants -- Absorption of water -- Measurement.; Plant-water relationships -- Measurement.
Degree Name:
M.S.
Degree Level:
masters
Degree Program:
Graduate College; Electrical and Computer Engineering
Degree Grantor:
University of Arizona

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleMULTI-STEP COULOSTATIC IMPULSE GENERATOR AND POTENTIAL MONITORING SYSTEMen_US
dc.creatorCoenen, Lance Gregory, 1959-en_US
dc.contributor.authorCoenen, Lance Gregory, 1959-en_US
dc.date.issued1987en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA Coulostatic Impulse Generator (CIG) is an electronic device that transfers electrical charge to and from a pair of electrodes inserted in plant tissue. Six discrete charge transfers can be implemented in any desired sequence. The major purpose of the CIG is to determine the electrochemical constituents of the plant apoplast electrolyte. The objective of this thesis is threefold: (1) to design, construct and test the supervisory circuitry of the CIG, (2) to design, construct and test the interface between the NEC portable computer and the CIG, (3) to generate utility software to control each circuit board in the system. To handle the extreme difference in the timing of the charge transfer (microseconds) and the subsequent plant response a three step timing sequence is employed which permits an independent range of sample times and sample numbers. Data acquired is first stored in RAM in the computer within the CIG and then transferred to the external computer. (Abstract shortened with permission of author.)en_US
dc.typetexten_US
dc.typeThesis-Reproduction (electronic)en_US
dc.subjectElectrochemical sensors -- Design and construction.en_US
dc.subjectPlants -- Absorption of water -- Measurement.en_US
dc.subjectPlant-water relationships -- Measurement.en_US
thesis.degree.nameM.S.en_US
thesis.degree.levelmastersen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.identifier.proquest1332154en_US
dc.identifier.oclc20292731en_US
dc.identifier.bibrecord.b16965231en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.