Characterizing Non-Wetting Fluid in Natural Porous Media Using Synchrotron X-Ray Microtomography

Persistent Link:
http://hdl.handle.net/10150/268376
Title:
Characterizing Non-Wetting Fluid in Natural Porous Media Using Synchrotron X-Ray Microtomography
Author:
Narter, Matthew
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The objective of this study was to characterize non-wetting fluid in multi-phase systems comprising a range of fluid and porous medium properties. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of fluids in natural porous media. Images were processed to obtain quantitative measurements of fluid distribution, morphology, and interfacial area. Column-flooding experiments were conducted with four enhanced-solubilization (ES) solutions to examine their impact on entrapped organic liquid. Mobilization caused a change in organic-liquid morphology and distribution for most experiments. The effect of ES-solution flooding on fluid-fluid interfacial area was similar to that of water flooding. Organic-liquid mobilization was observed at total trapping numbers that were smaller than expected. This was attributed to pore-scale mobilization of blobs that were re-trapped prior to being eluted from the column. Pore-scale mobilization was also observed during water-flooding experiments for which trapping numbers varied over several orders of magnitude. Water-flooding and surfactant-flooding experiments were compared to investigate the impact of interfacial tension, viscosity, and fluid velocity on entrapped organic liquid. For similar total trapping numbers, flooding at larger velocities appeared to have a greater effect on the distribution of non-wetting blobs than lowering interfacial tension or increasing the viscosity of the wetting fluid. The fluid-normalized interfacial area was generally independent of the total trapping number. Finally, the impact of fluid type on the interfacial area between different pairs of non-wetting fluids was investigated during drainage and imbibition in four natural porous media. Interfacial areas were similar among all fluid pairs for a given porous medium. They were also similar for drainage and imbibition conditions. The maximum specific interfacial area (A(m)) was determined to quantify the magnitude of interfacial area associated with a given porous medium. The value of A(m) was larger for the media with smaller median grain diameters. Therefore, physical properties of the porous medium appear to have a greater influence on the magnitude of specific total interfacial area for a given saturation than fluid properties or wetting-phase history.
Type:
text; Electronic Dissertation
Keywords:
Non-wetting Fluid; Organic Liquid; Porous Media; X-ray Microtomography; Soil, Water & Environmental Science; Contaminant Hydrology; Interfacial Area
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Soil, Water & Environmental Science
Degree Grantor:
University of Arizona
Advisor:
Brusseau, Mark L.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleCharacterizing Non-Wetting Fluid in Natural Porous Media Using Synchrotron X-Ray Microtomographyen_US
dc.creatorNarter, Matthewen_US
dc.contributor.authorNarter, Matthewen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe objective of this study was to characterize non-wetting fluid in multi-phase systems comprising a range of fluid and porous medium properties. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of fluids in natural porous media. Images were processed to obtain quantitative measurements of fluid distribution, morphology, and interfacial area. Column-flooding experiments were conducted with four enhanced-solubilization (ES) solutions to examine their impact on entrapped organic liquid. Mobilization caused a change in organic-liquid morphology and distribution for most experiments. The effect of ES-solution flooding on fluid-fluid interfacial area was similar to that of water flooding. Organic-liquid mobilization was observed at total trapping numbers that were smaller than expected. This was attributed to pore-scale mobilization of blobs that were re-trapped prior to being eluted from the column. Pore-scale mobilization was also observed during water-flooding experiments for which trapping numbers varied over several orders of magnitude. Water-flooding and surfactant-flooding experiments were compared to investigate the impact of interfacial tension, viscosity, and fluid velocity on entrapped organic liquid. For similar total trapping numbers, flooding at larger velocities appeared to have a greater effect on the distribution of non-wetting blobs than lowering interfacial tension or increasing the viscosity of the wetting fluid. The fluid-normalized interfacial area was generally independent of the total trapping number. Finally, the impact of fluid type on the interfacial area between different pairs of non-wetting fluids was investigated during drainage and imbibition in four natural porous media. Interfacial areas were similar among all fluid pairs for a given porous medium. They were also similar for drainage and imbibition conditions. The maximum specific interfacial area (A(m)) was determined to quantify the magnitude of interfacial area associated with a given porous medium. The value of A(m) was larger for the media with smaller median grain diameters. Therefore, physical properties of the porous medium appear to have a greater influence on the magnitude of specific total interfacial area for a given saturation than fluid properties or wetting-phase history.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectNon-wetting Fluiden_US
dc.subjectOrganic Liquiden_US
dc.subjectPorous Mediaen_US
dc.subjectX-ray Microtomographyen_US
dc.subjectSoil, Water & Environmental Scienceen_US
dc.subjectContaminant Hydrologyen_US
dc.subjectInterfacial Areaen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineSoil, Water & Environmental Scienceen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBrusseau, Mark L.en_US
dc.contributor.committeememberCurry, Joanen_US
dc.contributor.committeememberTuller, Markusen_US
dc.contributor.committeememberBrusseau, Mark L.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.