Evaluation of Dietary Niacin and Supplemental Cooling for Alleviation of Heat Stress in Lactating Dairy Cows

Persistent Link:
http://hdl.handle.net/10150/265340
Title:
Evaluation of Dietary Niacin and Supplemental Cooling for Alleviation of Heat Stress in Lactating Dairy Cows
Author:
Rungruang, Sunthorn
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Four studies were conducted to evaluate the effects of supplemental cooling and niacin on heat stress (HS) responses in vivo and in vitro in lactating dairy cows. For experiment one, lactating dairy cows were fed four levels of dietary niacin, NIASHURE® (0,4,8,12 g/d) for 21 d. Heat stress decreased niacin levels in whole blood, red blood cells and plasma as compared to thermoneutral. Water intake, plasma and milk niacin concentrations increased linearly with increasing dietary niacin in HS cattle. In thermoneutral, but not HS cows, niacin increased skin temperature compared to controls suggesting niacin increased skin blood flow and sensible heat loss. In experiment 2, lactating cows were used to evaluate the impact of feed-line soaking (FLS) combined with niacin supplementation. In evaporative cooled barns, FLS reduced body temperatures; however the addition of niacin did not improve heat status of these cows. For experiment 3, 200 lactating dairy cows were used to determine the effects of conductively cooled bedding (CC) compared to feed-line soaking with fans (FLSF). Conductively cooled bedding can reduce skin and vaginal temperatures in cows after nighttime rest. However, FLSF were more effective in decreasing body temperature, as cows had lower heat parameter indices, higher milk yield and longer rest time. For experiment 4, three cell types were used to evaluate niacin in vitro. Niacin induced heat shock proteins (HSP) that protected cells during HS in transformed bovine mammary epithelial cells but not in primary bovine mammary epithelial cells (BMEC) or bovine endometrial cells (BEND). Effect of niacin on HSP may depend on enzymes involved in DNA-binding activity of heat shock factor 1. These results suggest that niacin may be involved in whole body metabolism during heat stress and is cell dependent. We did not find dietary niacin to be commercially efficacious in treating HS in cows. Further research is warranted to improve efficacy of CC and FLSF under high temperature humidity index conditions.
Type:
text; Electronic Dissertation
Keywords:
Heat stress; Niacin; Animal Sciences; Cooling; Dairy cows
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Animal Sciences
Degree Grantor:
University of Arizona
Advisor:
Collier, Robert J.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleEvaluation of Dietary Niacin and Supplemental Cooling for Alleviation of Heat Stress in Lactating Dairy Cowsen_US
dc.creatorRungruang, Sunthornen_US
dc.contributor.authorRungruang, Sunthornen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractFour studies were conducted to evaluate the effects of supplemental cooling and niacin on heat stress (HS) responses in vivo and in vitro in lactating dairy cows. For experiment one, lactating dairy cows were fed four levels of dietary niacin, NIASHURE® (0,4,8,12 g/d) for 21 d. Heat stress decreased niacin levels in whole blood, red blood cells and plasma as compared to thermoneutral. Water intake, plasma and milk niacin concentrations increased linearly with increasing dietary niacin in HS cattle. In thermoneutral, but not HS cows, niacin increased skin temperature compared to controls suggesting niacin increased skin blood flow and sensible heat loss. In experiment 2, lactating cows were used to evaluate the impact of feed-line soaking (FLS) combined with niacin supplementation. In evaporative cooled barns, FLS reduced body temperatures; however the addition of niacin did not improve heat status of these cows. For experiment 3, 200 lactating dairy cows were used to determine the effects of conductively cooled bedding (CC) compared to feed-line soaking with fans (FLSF). Conductively cooled bedding can reduce skin and vaginal temperatures in cows after nighttime rest. However, FLSF were more effective in decreasing body temperature, as cows had lower heat parameter indices, higher milk yield and longer rest time. For experiment 4, three cell types were used to evaluate niacin in vitro. Niacin induced heat shock proteins (HSP) that protected cells during HS in transformed bovine mammary epithelial cells but not in primary bovine mammary epithelial cells (BMEC) or bovine endometrial cells (BEND). Effect of niacin on HSP may depend on enzymes involved in DNA-binding activity of heat shock factor 1. These results suggest that niacin may be involved in whole body metabolism during heat stress and is cell dependent. We did not find dietary niacin to be commercially efficacious in treating HS in cows. Further research is warranted to improve efficacy of CC and FLSF under high temperature humidity index conditions.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectHeat stressen_US
dc.subjectNiacinen_US
dc.subjectAnimal Sciencesen_US
dc.subjectCoolingen_US
dc.subjectDairy cowsen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineAnimal Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCollier, Robert J.en_US
dc.contributor.committeememberSmith, John F.en_US
dc.contributor.committeememberRenquist, Benjamin J.en_US
dc.contributor.committeememberSantos, Jose E. P.en_US
dc.contributor.committeememberBilby, Todd R.en_US
dc.contributor.committeememberCollier, Robert J.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.