Designing a Comprehensive, Integrated Approach for Environmental Research Translation: The Gardenroots Project to Empower Communities Neighboring Contamination

Persistent Link:
http://hdl.handle.net/10150/265337
Title:
Designing a Comprehensive, Integrated Approach for Environmental Research Translation: The Gardenroots Project to Empower Communities Neighboring Contamination
Author:
Ramirez-Andreotta, Monica D.
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Challenges at hazardous waste and contaminated sites are persistent, complex, and multifactorial, and unfortunately the progress in implementing solutions is slow. This delay can be attributed to the lack of collaboration, information transfer to the end-user, and partnership building among academia, government and the affected community. As a solution, Environmental Research Translation (ERT), a framework that is rooted in existing participatory models, and encompasses many of the key principles from informal science education and community-based participatory research is proposed. The ERT framework lead to a community-academic partnership called: Gardenroots: The Dewey-Humboldt, Arizona Garden Project. Vegetable gardening in contaminated soils presents a health hazard. A controlled greenhouse study was conducted in parallel with a co-created citizen science program to characterize the uptake of arsenic by homegrown vegetables near the Iron King Mine and Humboldt Smelter Superfund Site in Arizona. Community members, after training, collected soil, water and vegetable samples from their household garden. The greenhouse and home garden arsenic soil concentrations ranged from 2.35 to 533 mg kg⁻¹. In the greenhouse experiment four vegetables were grown in three different soil treatments and a total of 63 home garden produce samples were obtained from 19 properties neighboring the site. All vegetables accumulated arsenic, ranging from 0.01 - 23.0 mg kg⁻¹ dry weight. Bioconcentration factors were determined and arsenic uptake decreased in the order: Asteraceae > Brassicaceae >> Amaranthaceae > Cucurbitaceae > Liliaceae > Solanaceae > Fabaceae. Concentrations of arsenic measured in potable water, soils and vegetable samples were used in conjunction with reported US intake rates to calculate daily dose, excess cancer risk and Hazard Quotient for arsenic. Relative arsenic intake dose decreased in order: potable water > garden soils > well washed homegrown vegetables, and on average, each accounted for 79, 14 and 7%, of a residential gardener's daily arsenic intake dose. The IELCR ranges for vegetables, garden soils and potable water were 10⁻⁸ to 10⁻⁴, 10⁻⁶ to 10⁻⁴; and 10⁻⁵ to 10⁻², respectively. The ERT framework improved environmental health research, information transfer, and risk communication efforts. Incorporating the community in the scientific process lead to individual learning and community-level outcomes.
Type:
text; Electronic Dissertation
Keywords:
Mining Waste; plant uptake; Public participation in scientific research; risk characterization; Soil, Water & Environmental Science; Arsenic; Environmental Research Translation
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Soil, Water & Environmental Science
Degree Grantor:
University of Arizona
Advisor:
Brusseau, Mark L.; Maier, Raina M.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDesigning a Comprehensive, Integrated Approach for Environmental Research Translation: The Gardenroots Project to Empower Communities Neighboring Contaminationen_US
dc.creatorRamirez-Andreotta, Monica D.en_US
dc.contributor.authorRamirez-Andreotta, Monica D.en_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractChallenges at hazardous waste and contaminated sites are persistent, complex, and multifactorial, and unfortunately the progress in implementing solutions is slow. This delay can be attributed to the lack of collaboration, information transfer to the end-user, and partnership building among academia, government and the affected community. As a solution, Environmental Research Translation (ERT), a framework that is rooted in existing participatory models, and encompasses many of the key principles from informal science education and community-based participatory research is proposed. The ERT framework lead to a community-academic partnership called: Gardenroots: The Dewey-Humboldt, Arizona Garden Project. Vegetable gardening in contaminated soils presents a health hazard. A controlled greenhouse study was conducted in parallel with a co-created citizen science program to characterize the uptake of arsenic by homegrown vegetables near the Iron King Mine and Humboldt Smelter Superfund Site in Arizona. Community members, after training, collected soil, water and vegetable samples from their household garden. The greenhouse and home garden arsenic soil concentrations ranged from 2.35 to 533 mg kg⁻¹. In the greenhouse experiment four vegetables were grown in three different soil treatments and a total of 63 home garden produce samples were obtained from 19 properties neighboring the site. All vegetables accumulated arsenic, ranging from 0.01 - 23.0 mg kg⁻¹ dry weight. Bioconcentration factors were determined and arsenic uptake decreased in the order: Asteraceae > Brassicaceae >> Amaranthaceae > Cucurbitaceae > Liliaceae > Solanaceae > Fabaceae. Concentrations of arsenic measured in potable water, soils and vegetable samples were used in conjunction with reported US intake rates to calculate daily dose, excess cancer risk and Hazard Quotient for arsenic. Relative arsenic intake dose decreased in order: potable water > garden soils > well washed homegrown vegetables, and on average, each accounted for 79, 14 and 7%, of a residential gardener's daily arsenic intake dose. The IELCR ranges for vegetables, garden soils and potable water were 10⁻⁸ to 10⁻⁴, 10⁻⁶ to 10⁻⁴; and 10⁻⁵ to 10⁻², respectively. The ERT framework improved environmental health research, information transfer, and risk communication efforts. Incorporating the community in the scientific process lead to individual learning and community-level outcomes.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectMining Wasteen_US
dc.subjectplant uptakeen_US
dc.subjectPublic participation in scientific researchen_US
dc.subjectrisk characterizationen_US
dc.subjectSoil, Water & Environmental Scienceen_US
dc.subjectArsenicen_US
dc.subjectEnvironmental Research Translationen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineSoil, Water & Environmental Scienceen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBrusseau, Mark L.en_US
dc.contributor.advisorMaier, Raina M.en_US
dc.contributor.committeememberArtiola, Janick F.en_US
dc.contributor.committeememberBeamer, Palomaen_US
dc.contributor.committeememberBrusseau, Mark L.en_US
dc.contributor.committeememberMaier, Raina M.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.