Chronologies from Termperature-Sensitive Bristlecone Pines at Upper Treeline in Western United States

Persistent Link:
http://hdl.handle.net/10150/260057
Title:
Chronologies from Termperature-Sensitive Bristlecone Pines at Upper Treeline in Western United States
Author:
LaMarche, Valmore C., Jr.; Stockton, Charles W.
Affiliation:
Laboratory of Tree-Ring Research, The University of Arizona
Issue Date:
1974
Rights:
Copyright © Tree-Ring Society. All rights reserved.
Collection Information:
This item is part of the Tree-Ring Research (formerly Tree-Ring Bulletin) archive. It was digitized from a physical copy provided by the Laboratory of Tree-Ring research at The University of Arizona. For more information about this peer-reviewed scholarly journal, please email the Editor of Tree-Ring Research at editor@treeringsociety.org.
Publisher:
Tree-Ring Society
Journal:
Tree-Ring Bulletin
Citation:
LaMarche, Jr., V.C., Stockton, C.W. 1974. Chronologies from temperature-sensitive bristlecone pines at upper treeline in western United States. Tree-Ring Bulletin 34:21-45
Abstract:
Ring-width variation in trees at upper treeline in the high mountains of temperate latitudes is a potentially important indicator of past climatic variations, especially temperature variations. Bristlecone pines (Pinus longaeva D.K. Bailey and P. aristata Engelm.) were sampled at nine sites in western United States. Plotted annual ring-width indices are given for chronologies that range in length from 532 years in New Mexico, 1409 years in Colorado, and 1239 years in Nevada to 1501 years in eastern California. Possibilities for increasing the length of these chronologies by incorporating tree-ring data from logs and remnants are good in several of the areas, and a 5405-year upper treeline chronology has been developed in California. Tree-ring statistics show that crossdating is poorer, the climatic response is smaller, and the autocorrelation (a measure of year-to-year persistence) is greater in trees at upper treeline sites than at sites near the arid lower forest border. Climatic response functions differ in many details, but generally indicate a positive response of ring growth to warm temperatures in the previous late summer and autumn and current spring and summer. There is a negative response to warm temperatures during some winter and early spring months at several of the sites. The effect of precipitation varies greatly, but a positive response to precipitation during the previous summer or autumn, and during the current spring or summer is indicated. Variations in needle length are related to summer temperature, and may be important in explaining the high autocorrelation of upper treeline ring-width series. Ring-width departures from the long-term mean during the past 500 years were calculated from upper treeline data for 30-year subperiods. The departures are in the same direction over the whole region during many of these subperiods, indicating that climate, rather than local ecological factors, is responsible for the ring-width variations. Comparison of tree-growth fluctuations with meteorological observations at selected stations shows that a general warming trend between the periods 1901-1930 and 1931-1960 is reflected by an upward trend in tree growth. However, low rates of tree growth during an earlier warm period (1850-1869) may be due to a lag in the response of ring -width growth to climatic changes at upper treeline.
Keywords:
Dendrochronology; Tree Rings
ISSN:
0041-2198
Additional Links:
http://www.treeringsociety.org

Full metadata record

DC FieldValue Language
dc.language.isoen_USen_US
dc.titleChronologies from Termperature-Sensitive Bristlecone Pines at Upper Treeline in Western United Statesen_US
dc.contributor.authorLaMarche, Valmore C., Jr.en_US
dc.contributor.authorStockton, Charles W.en_US
dc.contributor.departmentLaboratory of Tree-Ring Research, The University of Arizonaen_US
dc.date.issued1974-
dc.rightsCopyright © Tree-Ring Society. All rights reserved.en_US
dc.description.collectioninformationThis item is part of the Tree-Ring Research (formerly Tree-Ring Bulletin) archive. It was digitized from a physical copy provided by the Laboratory of Tree-Ring research at The University of Arizona. For more information about this peer-reviewed scholarly journal, please email the Editor of Tree-Ring Research at editor@treeringsociety.org.en_US
dc.publisherTree-Ring Societyen_US
dc.identifier.journalTree-Ring Bulletinen_US
dc.identifier.citationLaMarche, Jr., V.C., Stockton, C.W. 1974. Chronologies from temperature-sensitive bristlecone pines at upper treeline in western United States. Tree-Ring Bulletin 34:21-45en_US
dc.description.abstractRing-width variation in trees at upper treeline in the high mountains of temperate latitudes is a potentially important indicator of past climatic variations, especially temperature variations. Bristlecone pines (Pinus longaeva D.K. Bailey and P. aristata Engelm.) were sampled at nine sites in western United States. Plotted annual ring-width indices are given for chronologies that range in length from 532 years in New Mexico, 1409 years in Colorado, and 1239 years in Nevada to 1501 years in eastern California. Possibilities for increasing the length of these chronologies by incorporating tree-ring data from logs and remnants are good in several of the areas, and a 5405-year upper treeline chronology has been developed in California. Tree-ring statistics show that crossdating is poorer, the climatic response is smaller, and the autocorrelation (a measure of year-to-year persistence) is greater in trees at upper treeline sites than at sites near the arid lower forest border. Climatic response functions differ in many details, but generally indicate a positive response of ring growth to warm temperatures in the previous late summer and autumn and current spring and summer. There is a negative response to warm temperatures during some winter and early spring months at several of the sites. The effect of precipitation varies greatly, but a positive response to precipitation during the previous summer or autumn, and during the current spring or summer is indicated. Variations in needle length are related to summer temperature, and may be important in explaining the high autocorrelation of upper treeline ring-width series. Ring-width departures from the long-term mean during the past 500 years were calculated from upper treeline data for 30-year subperiods. The departures are in the same direction over the whole region during many of these subperiods, indicating that climate, rather than local ecological factors, is responsible for the ring-width variations. Comparison of tree-growth fluctuations with meteorological observations at selected stations shows that a general warming trend between the periods 1901-1930 and 1931-1960 is reflected by an upward trend in tree growth. However, low rates of tree growth during an earlier warm period (1850-1869) may be due to a lag in the response of ring -width growth to climatic changes at upper treeline.en_US
dc.subjectDendrochronologyen_US
dc.subjectTree Ringsen_US
dc.identifier.citationLaMarche, Jr., V.C., Stockton, C.W. 1974. Chronologies from temperature-sensitive bristlecone pines at upper treeline in western United States. Tree-Ring Bulletin 34:21-45en_US
dc.identifier.issn0041-2198-
dc.identifier.urihttp://hdl.handle.net/10150/260057-
dc.identifier.journalTree-Ring Bulletinen_US
dc.typeArticleen_US
dc.relation.urlhttp://www.treeringsociety.orgen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.